
Management of NORM -A Canadian perspective

John M. Takala ICRP Workshop on Surface Disposal of Radioactive Waste November 6, 2017 - Fukushima, Japan

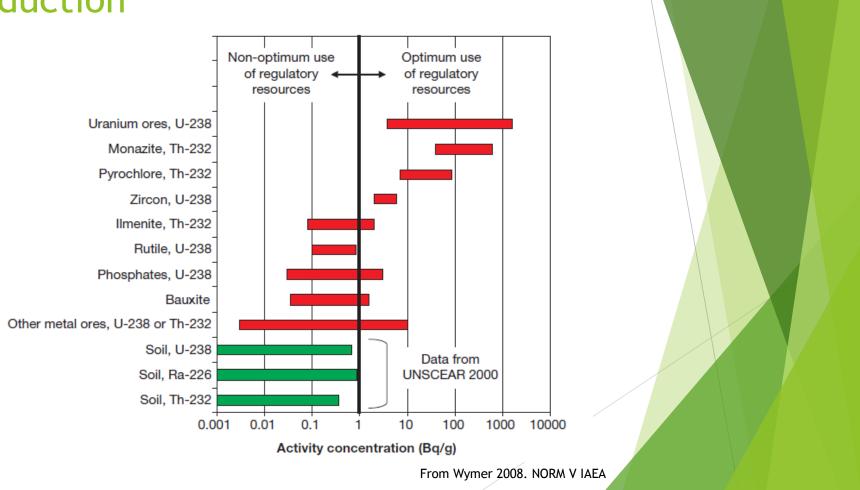
DISCLAIMER

Views and opinions are mine and I am not representing ICRP Committee 4 nor my employer Cameco Corporation

Outline

- Introduction
- Industries impacted by Naturally Occurring Radioactive Materials (NORM)
- Canadian Regulatory Approach
- Practical Implementation Issues

Introduction


- Naturally Occurring Radioactive Material
 - Present in varying concentrations in most materials
- Primordial radionuclides
 - Uranium 238 (and decay series)
 - Thorium 232 (and decay series)
 - Potassium 40
 - Very low concentrations of others (e.g., U 235 decay series)

Introduction

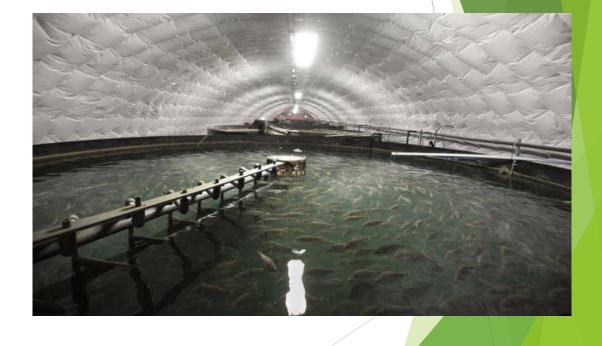
- Concentration of NORM in most substances low
- Human activities can lead to higher concentrations
- In some situations necessitates the need safety measures
- Can occur at different stages
 - Handling
 - Processing
 - Transport
 - Disposal

Introduction

Mineral Extraction and Processing

- NORM may be released or concentrated in a process stream during the processing of ore
- K-40, U-238, and Th-232 decay series in variety of ore formations

Oil and Gas Production


- trace quantities of NORM may be found in hydrocarbon bearing geological formations
- Oil production Ra-226 can precipitate on process equipment

 Gas production - Rn-222 in natural gas and can Pb-210 accumulate inside gas processing equipment

Water Treatment Facilities

- Water (fresh or waste) treated through sorptive media or ionexchange resins to remove impurities may concentrate NORM and may release radon
- Fish hatcheries

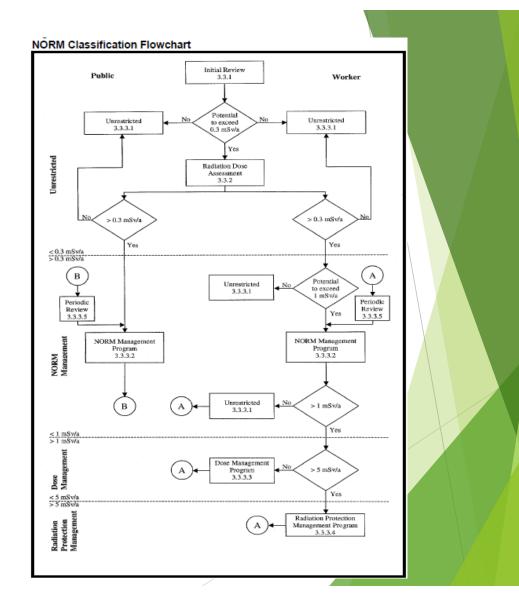
- Tunnelling and Underground Workings
 - Release of radon in underground mines

- Thermal-Electric Production and Forest Products
 - Mineral ashes from combustion may concentrate NORM present in coal and plants

Metal recycling

NORM contaminated can be redistributed

Canadian Regulatory Approach


- Canadian federal regulator (Canadian Nuclear Safety Commission - CNSC) mandate covers nuclear fuel cycle from uranium mining to nuclear power plants and transport of radioactive materials
- Most other industries impacted by NORM are under provincial legislation
- Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM) 2011
 - Jointly developed by federal, provincial, and territorial regulators
 - High-level guidance and basis for specific regulations

Canadian Guidelines for the Management of NOR

- Incorporates guidance from International Commission on Radiological Protection (ICRP) and CNSC regulations
 - ICRP principles of Justification, Optimization, Limitation
 - The emphasis is on optimization and limitation for occupational (and public) exposures
 - Recommended occupational dose limit for NORM workers
 - 50 mSv/y, 100 mSv/5y practical limit of 20 mSv/y
 - Only applies to workers who are exposed to NORM as part of routine duties
 - Incidentally exposed workers treated as member of public with 1 mSv/y limit

NORM Program Classifications

- A dose constraint of 0.3 mSv/y is recommended
- If < 0.3 mSv/y no further actions required
- If > 0.3 mSv/y develop NORM management program
- If workers doses > 1 mSv/y need Dose Management Program
 - ► Consider PPE, training
 - Estimate doses to workers
- If worker doses > 5 mSv/y need formal Radiation Protection Management Program
 - ▶ PPE, training, procedures
 - Individual dosimetry

NORM Material Management

- NORM Derived Release Limits (DRLs)
 - 0.3 mSv/y used as dose constraint in calculation
 - Used to set criteria for unconditional release
 - Still may need to consider non-radiological properties and other criteria
 - Distinction between DIFFUSE NORM and DISCRETE NORM
 - Diffuse NORM high volume, low radioactive concentration, uniformly distributed throughout the material
 - Discrete NORM exceed concentration limit for diffuse NORM
 - DRL's calculated on pathways analysis

Diffuse NORM Sources

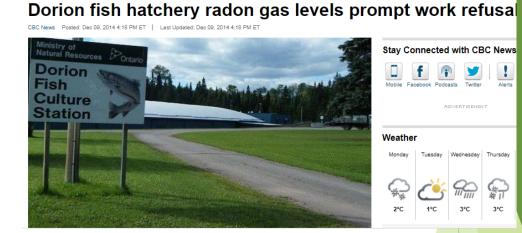
Unconditional Derived Release Limits- Diffuse NORM Sources

NORM Radionuclide	Derived Release Limit ^(a)		
	Aqueous ^(b) (Bq/L)	Solid (Bq/kg)	Air (Bq/m ³)
Uranium-238 Series (all progeny)	1	300	0.003
Uranium-238 (U-238, Th-234, Pa-234m, U-234)	10	10,000	0.05
Thorium-230	5	10,000	0.01
Radium-226 (in equilibrium with its progeny)	5	300	0.05
Lead-210 (in equilibrium with bismuth-210 and polonium-210)	1	300	0.05
Thorium-232 Series (all progeny)	1	300	0.002
Thorium-232	1	10,000	0.006
Radium-228 (in equilibrium with Ac-228)	5	300	0.005
Thorium-228 (in equilibrium with all its progeny)	1	300	0.003
Potassium-40	n/a ^(d)	17,000 ^(c)	n/a

Discrete NORM Sources

Unconditional Derived Release Limits

NORM Radionuclide	Unconditional Derived Release Limit ^(a) (Bq)	
Uranium Ore (in equilibrium with all progeny)	1,000	
Uranium-238 (partitioned) (in equilibrium with thorium-234 and protactinium-234)	10,000	
Thorium-230 (no progeny)	10,000	
Radium-226 (in equilibrium with its progeny)	10,000	
Lead-210 (in equilibrium with bismuth-210 and polonium-210)	10,000	
Thorium-232 (in equilibrium with all progeny)	1,000	
Radium-228 (in equilibrium with actinium-228)	100,000	
Thorium-228 (in equilibrium with its short-lived progeny)	10,000	
Potassium-40	1,000,000	


Discrete NORM Sources

- Discrete NORM sources must also meet surface contamination limits
 - 0.5 µSv/h at 50 cm
 - 1 Bq/cm² averaged over 100 cm²
 - Applies to fixed surface contamination; loose surface contamination completely removed
 - Recommended to use thin-window beta/gamma detector

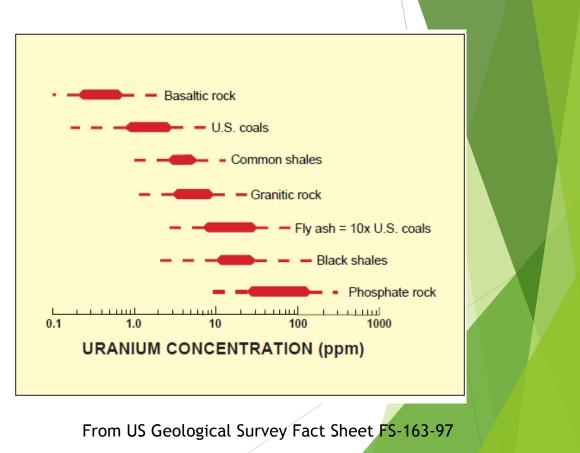
Practical Implications - Rn in Workplaces

Radon released from water impacting work environment in fish hatcheries

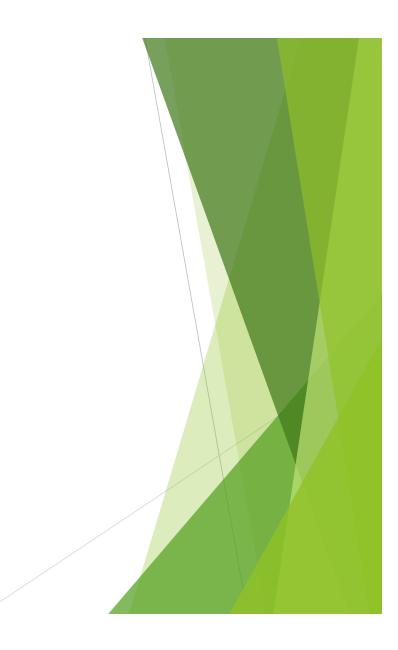
Practical Implications - Rn in Workplaces

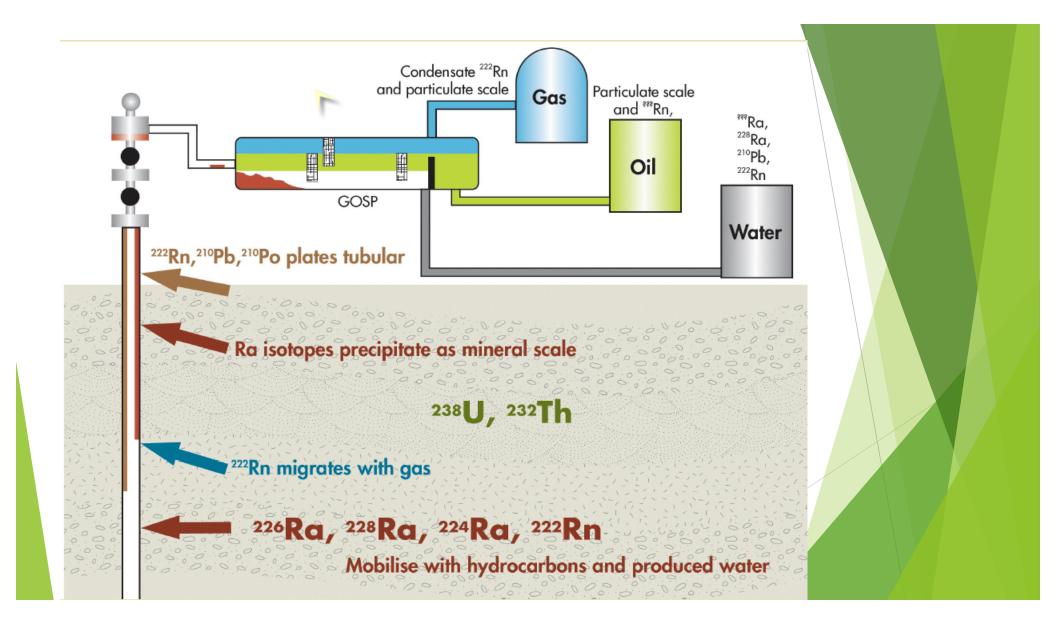
Application of Canadian NORM Guideline - province of Ontario

Program classifications for radon and NORM				
Average annual concentration of radon [Bq/m ³] [1]	NORM program classification ^[2]			
800 - 3,000	Radiation Protection Management			
200 - 800	NORM Management			
Background – less than 200	Unrestricted			

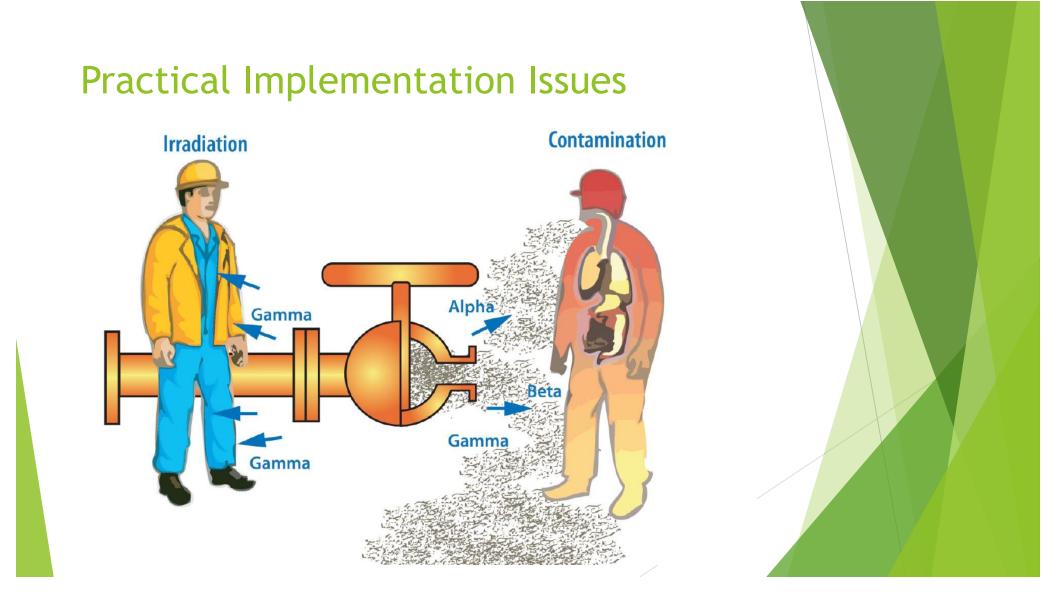

From https://www.labour.gov.on.ca/english/hs/pubs/gl_radon.php

Practical Implications - Rn in Workplaces


Monitor Rador Radon in Start Date End Date Location Site Identification Bq/m³ Number MM-DD-YY MM-DD-YY in pCi/l 10-26-06 Cody C.1 86 1 4655692 9-19-06 Entrance 3185.7 4655654 9-19-06 10-26-06 83 9 3104.3 Cody C.1 Entrance 85.2 Porcupine Passage Cody C.2 3152.4 4655664 9-19-06 10-26-06 75.0 2775.0 4655608 9-19-06 10-26-06 Porcupine Passage Cody C.2 83.9 4655697 9-19-06 10-26-06 Twilight A Cody C.3 3104.3 82 8 10-26-06 Twilight A Cody C.3 3063.6 4655683 9-19-06 83 3 Twilight B Cody C.4 3082.1 4655651 9-19-06 10-26-06 91.3 4655710 9-19-06 10-26-06 Upper Rm Cody C.5 3396.6 4655642 9-19-06 10-26-06 Upper Rm Cody C.5 90.5 3348.5 102.8 3803.6 4655652 9-19-06 10-26-06 Balcony Rm Cody C.6 4655633 94.5 3496.5 9-19-06 10-26-06 Balcony Rm Cody C.6


Radon in Cody Caves Form

- Coal ash about 10% by weight and radionuclides can be concentrated by a factor of ~10x
- Fly ash long-term use and disposal


- Oil and gas industries have to deal with NORM
- Occupational issues
 - Radon exposures
 - Inhalation hazard from long-lived alpha activity
 - External gamma radiation

Radionuclide	Natural gas Bq/m ³	Produced water Bq/L	Hard scale Bq/kg	Sludge Bq/kg
U-238		trace	1 - 500	5 - 10
Ra-226		0.002 - 1200	100 - 15 million	50 - 800,000
Po-210	0.002 - 0.08		20 - 1500	4 - 160,000
Pb-210	0.005 - 0.02	0.05 - 190	20 - 75,000	10 - 1.3 million
Rn-222	5 - 200,000			
Th-232		trace	1 - 2	2 - 10
Ra-228		0.3 - 180	50 - 2.8 million	500 - 50,000
Ra-224		0.05 - 40		

Source: IAEA 2003, Safety Report Series 34.

- Occupational safety measures
 - ► PPE
 - contamination control
 - work practices to minimize generation of airborne dust
 - Signage for radiation areas
 - Radiation surveys
 - Process area and equipment
 - Po-21, Bi-210, Pb-210 in pipes have no discernable gamma signal
 - Scrap metal being shipped off site
 - Airborne radioactivity sampling

- Transport of NORM governed by CNSC (federal) Transport and Packaging of Radioactive Materials Regulations and Transportation of Dangerous Goods Regulations
 - NORM contaminated equipment

A SECURE NORM technician is conducting a NORM screening survey on down-hole tubing and equipment prior to release from location.

- NORM Waste Disposal
 - Underground salt cavern
 - ▶ 300 Bq/g per radionuclide
- Accepts other types of waste
 - Solvents, greases, lubricants, paint wastes, metal contaminated sludges, non-chlorinated organic wastes

Landfill Disposal of NORM

- 70 Bq/g (except 55 Bq/g for Ra-226, 2 Bq/g for U-Nat, Th-232 - 6 Bq/g)
- Some hazardous substances also accepted



SECURE's Pembina Landfill is located north of Drayton Valley at SE-18-050-11W5M. NORM disposal

Conclusions

- NORM issues impact many industries
- Doses to workers and public are generally low
- Standard occupational radiation protection practices work well to control occupational exposures
- Disposal of NORM aligned with other hazardous wastes
- Growing awareness of NORM issues

Questions???

Primary References

- Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM). Prepared by the Canadian NORM Working Group of the Federal Provincial Territorial Radiation Protection Committee. Health Canada 2011
- Doug Chambers 2013. Radiological Protection in North American naturally occurring radioactive mineral industries. Proceedings of the Second International Symposium on the System of Radiological Protection
- G. Hughes and C. Cuthill 2017. Management of Naturally Occurring Radioactive Materials (NORM) in Western Canada. Presentation at CRPA Conference Saskatoon 2017
- Suncor Energy Naturally Occurring Radioactive Material Standard. Revision date 2017/07/31
- World Nuclear Association. Naturally Occurring Radioactive Materials (NORM). http://www.worldnuclear.org/information-library/safety-and-security/radiation-and-health/naturally-occurringradioactive-materials-norm.aspx