
Main characteristics of the Human Respiratory Tract Model (HRTM) used in the OIR and EIR series

TG 95 Webinar Internal Dose Coefficients for Workers and Members of the Public 6 December 2023





### Revision of the Human Respiratory Tract Model (HRTM)





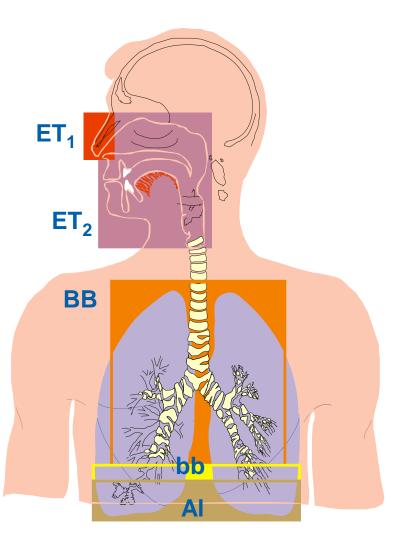
# Scope of the HRTM

HRTM: Quantitative description of the respiratory tract as a route of entry of radionuclides to the body.

- Calculating activity distribution and retention in RT regions (lungs monitoring)
- Calculating doses to RT target tissues (absorbed and equivalent doses)
- Aerosol particle sizes  $0.001 20 \ \mu m$ , gases and vapours
- For workers and members of the public. One Reference Individual for each age-group:
  3-months, 1-, 5-, 10- and 15-y old children and adult (worker and public).



# **Respiratory tract regions**


#### **Extrathoracic airways**

ET<sub>1</sub>: anterior nasal passages

ET<sub>2</sub>: posterior nasal passages, pharynx and larynx

#### **Bronchial**

### Bronchiolar Alveolar interstitial





# Particle deposition in respiratory tract

#### **Total and regional deposition**

fraction(s) of the intake deposited in the respiratory tract (regions)

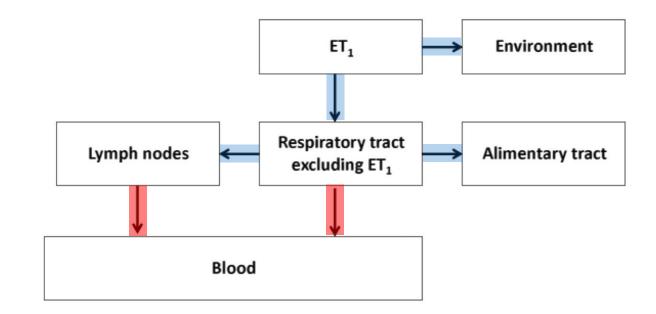
#### Anatomical and physiological parameters

- dimensions of respiratory tract
- ventilation rate, breathing frequency
- fraction breathed through nose

#### **Aerosol parameters**

- particle size distribution (AMAD or AMTD,  $\sigma_g$ )
- particle density and shape factor

| Exposure      | AMAD<br>(µm) |  |  |  |
|---------------|--------------|--|--|--|
| Occupational  | 5            |  |  |  |
| Environmental | 1            |  |  |  |

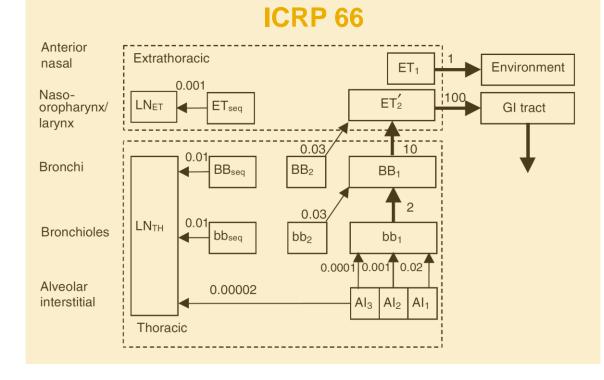

Exception: short-lived progeny of radon (ICRP137, OIR P3)

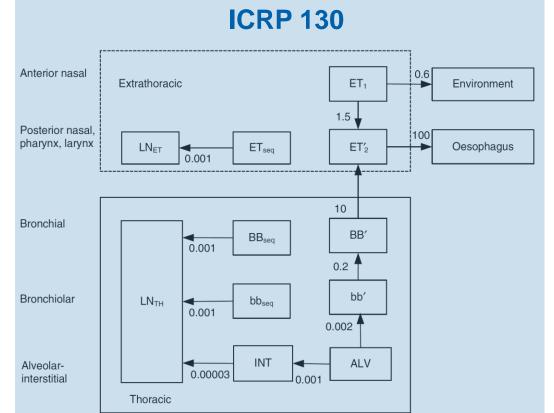


### Clearance model for the respiratory tract

#### Simplifying modelling assumptions

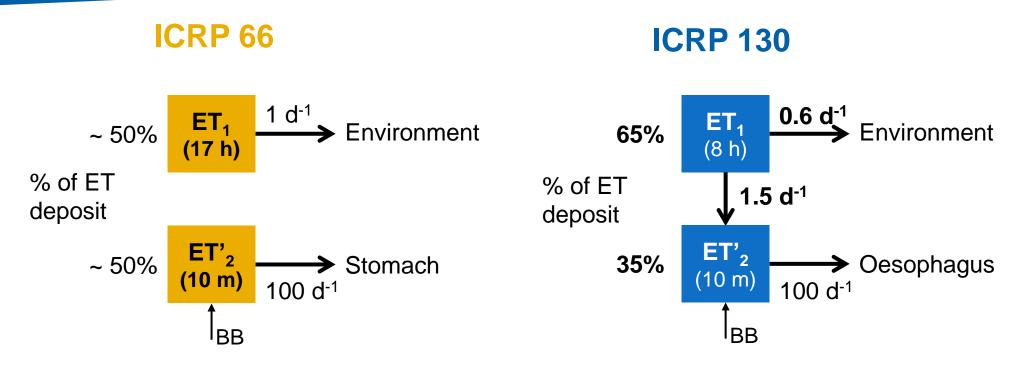
- Two independent mechanisms:
  - particle transport
  - absorption into blood
- Independent of age and sex
- Particle transport same for all materials
- Absorption same in all regions except ET1
- Compartmental model with constant rates




# **Clearance by particle transport**

#### **Revision of particle transport**

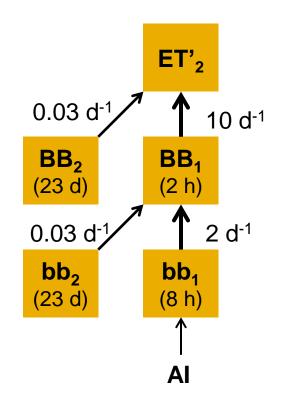

- Simplified model structure
- changes to transport rates (d<sup>-1</sup>)

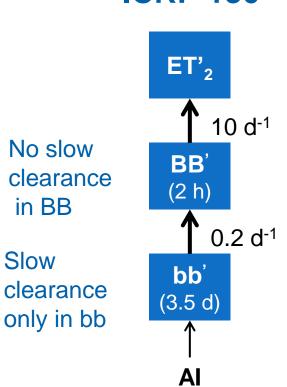






### Clearance by particle transport: Extra-thoracic regions





- May increase dose coefficients
  - greater systemic uptake from ET<sub>2</sub> and alimentary tract
- Monitoring of faecal samples:
  - increased clearance to alimentary tract (~ 80% ET deposit)



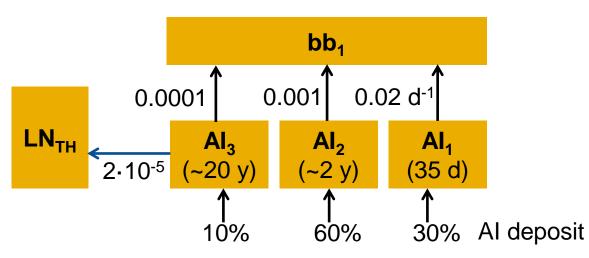
### Clearance by particle transport: Bronchial and bronchiolar regions

**ICRP 66** 

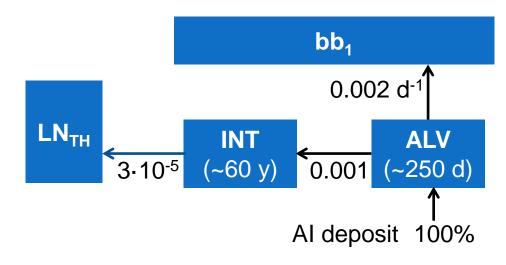




#### **ICRP 130**


#### **Decreased lung dose**

for moderately soluble materials of alpha emitters with radioactive half-lives of weeks or more




### Clearance by particle transport: alveolar-interstitial region

#### **ICRP 66**

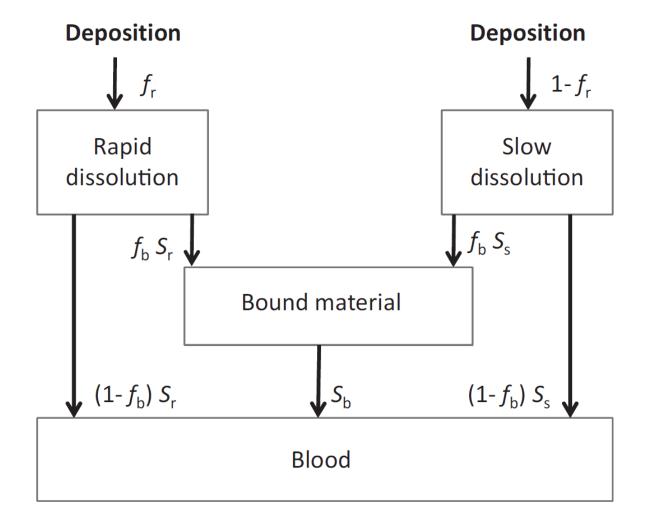


#### **ICRP 130**



- Greater retention in AI region for insoluble particles
- About 33% of the alveolar deposit is sequestered in the interstitium (for insoluble particles)
- Lung doses 50–100% higher for insoluble materials of long-lived  $\alpha$ -emitters, little effect on more soluble forms.




# **Clearance: absorption into blood**

Depends on the physical and chemical form

Same rates in each RT regions, except ET<sub>1</sub>

Two stages: dissolution + uptake to blood

Bound material not subject to particle transport





# **Clearance: absorption into blood**

**Review** of experimental data (in vitro, in-vivo) to derive absorption characteristics of inhaled materials

 update default values for three types of materials: Type F (fast), M (moderate) and S (slow)

Where sufficient information (limited set) adopt

- material-specific values
- element-specific values for bound state
- element-specific values for rapid absorption rate in soluble materials



### Clearance by absorption to blood: default Types (F,M,S)

#### ICRP 66

#### **ICRP 130**

| Absorption Type                           |                | F<br>(fast) | M<br>(moderate) | S<br>(slow) | (1 | F<br>fast) | M<br>(moderate) | S<br>(slow) |
|-------------------------------------------|----------------|-------------|-----------------|-------------|----|------------|-----------------|-------------|
| Fraction dissolved rapidly                | f <sub>r</sub> | 1           | 0.1             | 0.001       |    | 1          | 0.2             | 0.01        |
| Rapid dissolution rate (d <sup>-1</sup> ) | s <sub>r</sub> | 100         | 100             | 100         |    | 30         | 3               | 3           |
| Slow dissolution rate (d <sup>-1</sup> )  | Ss             | -           | 0.005           | 0.0001      |    | -          | 0.005           | 0.0001      |

Bound state not included in default types F, M and S

#### **Changes to f**<sub>r</sub> and s<sub>r</sub> values

reduce rapid absorption in the ET airways and increase in the lungs.



### Deposition and clearance of gases and vapours

The ICRP-66 classification SR-0, SR-1, SR-2 not been found helpful and no longer used.

**Deposition (%)** 

Type V (very fast): Instantaneous uptake into blood has also been recommended.

**Revised default** 100% deposition and Type F absorption.

#### Default HTO Hg 2 100 100 100 80 Tot 0 ET1 0 0 0 20 50 2 20 ET2 BB 10 10 50 1 20 20 2 bb 0 50 50 0 75 ΑΙ V F F Туре F



# **Revised HRTM**

#### Description of the revised HRTM model in

- ICRP Publication 130, OIR Part 1, Introduction and Annex A.
- ICRP Publication xxx, EIR Part 1, Introduction

#### Absorption parameter values for each element

- OIR Part 2-5
- EIR Part 1-3





# Thank you

## www.icrp.org

### Absorption to blood: element-specific parameters

#### Rapid absorption rate, soluble forms (Type F)

| S <sub>r</sub>                                   | Elements                          |  |  |  |
|--------------------------------------------------|-----------------------------------|--|--|--|
| 100                                              | H, C, Fe,Tc, I, Cs, Pb            |  |  |  |
| 70                                               | Са                                |  |  |  |
| 50                                               | Te, Th, Pa                        |  |  |  |
| 20                                               | Ва                                |  |  |  |
| 10                                               | Ra, U                             |  |  |  |
| 3                                                | Po, Ni                            |  |  |  |
|                                                  |                                   |  |  |  |
| 1                                                | P, Co, Y, Bi, Ag, all lanthanoids |  |  |  |
| 0.4                                              | Ac, Pu, all trans-plutonium       |  |  |  |
| s <sub>r</sub> values also used for Type M and S |                                   |  |  |  |

#### **Bound fraction and uptake rate**

|     | f <sub>b</sub> | s <sub>b</sub><br>(d <sup>-1</sup> ) | ET <sub>2</sub> | BB,<br>bb | AI |
|-----|----------------|--------------------------------------|-----------------|-----------|----|
| Со  | 0.03           | 0.002                                |                 |           | Х  |
| Ru  | 0.05           | 0.1                                  | х               | х         | Х  |
| Ce* | 0.07           | 0.02                                 | Х               |           | Х  |
| Hg  | 0.24           | 2.1                                  | Х               | х         | Х  |
| Pb  | 0.5            | 1.7                                  | Х               | x         | Х  |
| Pu* | 0.002          | 0.                                   | х               | х         | Х  |

Applied to conducting airways (ET2, BB and bb) only if supporting experimental evidence (autoradiography, autopsy data).



II IESS IIIAII S U '.