TGI24 Workshop on Justification Session I:

Planned Exposure Situation Medical Patient Applications

Kimberly Applegate,MD,MS Chair Committee 3

15 May, 2023

Contents

A. Defining Justification in Medicine B. Challenges and Opportunities since PublO3 C. Measuring Patient Outcomes D. NCRP Commentary 13 (1995)

Improving RP in Medicine: Iterative Steps Over Time

- ICRP Publication 73 (1996) set out stronger guidance in medicine than elsewhere for both justification and optimization:
 - <u>3 levels of justification</u>
 - 2 levels of optimization
- Pub 73 also established DRLs
- Since Pub 103 (2007), 25 Annals publications on medical RP:
 - Clarify guidance, e.g., how to develop DRLs (Pub 135)
 - Mainly topical, Systems integration, teamwork, continuous improvement in complex environments (TG 108)
 - Recommend education and training in RP (Pub 113; collaborations with IAEA)
 3

Pub 73, 1996: Justification for Patient Imaging Procedures

Most benefits and risks apply to the patient

- 1. Level 1: any exposure should do more good than harm
 - Taken for granted but ...
 - This is why a solid foundation in medical and RP ethics is essential (P138 and TG109), codes of ethics, safety culture
- 2. Level 2: Evidence based imaging protocols
 - Provide e-CDS imaging guidelines (at point of care)
- 3. Level 3: Individualized approach

4. No dose limits*

ESRE Guide

Changes since Publication 103

- Pub 138, TG109 on <u>ethics</u> in medical RP (patient focus)
 - Strengthening ethics training will improve justification in medicine
- Enormous increase in technologies/complexity and volumes of imaging but strengthened <u>optimisation</u> has stabilized population exposures
- Increasing expectations, patient shared-decisions and engagement with stakeholders
- New <u>domains</u> of medical RP research^{*} (e.g., AI/ML, registries, heavy ion radiotherapies, targeted alpha radiotherapies

*similar to MEDIRAD, other

Pairing the ethical values in TGI09

Opportunities (P135, TG108)— Justification in Medicine

<u>Collaboration</u>

- Widen education and training to all stak eholders, ensure access throughout career, include ethics and measurement of patient outcomes for justification
 - Vassileva et al. JRP 42; 2022
- Learn from each other (flatten authority gradient)
- Create safe learning environments without blame
- Develop dose registries, especially for vulnerable populations (children), linked to clinical data

How Can We Assess Imaging Procedures in Healthcare?

Avedis Donabedian, a pediatrician and public health expert, developed a quality model allowing assessment (qualitatively/quantitatively) in 1966 that endures today:

Consider opportunities for research on justification: Worldwide "Insatiable Appetite" for Imaging

- 4.2 billion exams/year (UNSCEAR 2020*)
 - *does not include RTx imaging or radionuclide Tx
- Majority of ICRP publications focus on optimisation, not justification
- Perhaps 1/3 unneeded...
 - 25% waste in USA healthcare system JAMA 2019; Oct 7. WH Shrank et al

Opportunity: Geographic <u>Variation in Cost of Care</u> Among Medicare Enrollees, 2002 -2003

Standardized Discharge Ratio (Log scale)

Source: Dartmouth Atlas Project, 1996-present; slide courtesy C Blackmore.

NCRP: Measuring Justification

How do we measure justification for imaging (radiology procedures and nuclear medicine)?

- <u>NCRP Commentary 13 (1995)</u> introduces discussion with concern of rising US health care costs
- Research methods focus on outcomes, cost effectiveness research, and efficacy model by Fryback and Thornbury (1991)
- Discusses the limitations of RCTs for radiology and nuclear medicine, and tests in general
- Also advocates and explains role for systematic reviews and meta-analyses

Fryback & Thornbury 6-Tier Hierarchical Model of Efficacy

Fryback & Thornbury Model

Radiology imaging is part of a larger system of health care

Efficacy goes beyond quality & accuracy (levels 1,2)—necessary, not sufficient

Applicable to any dx test--history, physical, labs, clinical scores, 'test of time'

Medical Decision Making. Apr-Jun 1991;11(2):88-94

Summary

- Justification in medicine has 3 levels
- There are several strategies to measure patient outcomes but limited research training
 - Donabedian Model
 - Continuous Process/Quality Improvement
 - Variation in Use of Imaging ('Waste')
 - Fryback and Thornbury Model of Efficacy
 - Systematic Review/Meta-analysis

Questions for Discussion

- How is the level 2 justification currently applied in your country?
- When is justification more carefully individualized (level 3), rather than protocoled (level 2)?
- What are the challenges and obstacles for applying the principle of justification?
- What guidance would be helpful to improve the application of the justification principle?

Value of Imaging

CT/MRI most important innovation in medicine in the 20th century*

*Fuchs V and Sox HC, Health Affairs 2001;20:30-42

Image courtesy C Blackmore

Value of Imaging?

Ottawa Ankle Rules

Value of Imaging?

Image courtesy C Blackmore

How Hazardous Is Health Care?

Thank you

keapple5123@gmail.com

Committee 3 Medicine and Veterinary RP, 2021-2025 (and 9 task groups)

Applegate Kimberly Prof RDx (USA) Chair
Cantone Marie-Claire Prof MP (Italy)
Damilakis John* Prof MP (Greece)
Hosono Makoto Prof NM (Japan)
Isambert Aurelie* Tx MP (France)
Kortesniemi Mika* MP (Finland)
Mahadevappa Mahesh* MP (USA)
Martí-Climent Josep Prof MP (Spain)

Paeng Jin* Prof NM (Korea)
Ruebe Claudia Prof RO (Germany)
Small William Prof RO (USA)
Søvik Åste* DVM (Norway)
Sutton David Dr MP (UK) Secretary
Thierry-Chef Isabelle* RP, EPI (Spain)
Williams Ivan* Tx MP (Australia)
Zhuo Weihai* RP, nuc engin (China)

Martin Colin Dr MP (UK) Vice-Chair

Examples of Appropriate Decreased Use of Imaging in Children

Imaging not needed or imaging with ionizing radiation has been replaced with non-ionizing radiation imaging:

- CT/US follow up of body trauma is rarely needed (solid organ)
- Multi-phase CT in children (any body part) also rarely needed
- 'Some' use of abdominal radiographs for pyloric stenosis, intussusception, appendicitis
- Small Bowel Follow Through studies (especially for IBD)

Efficacy

• Can it work?

- Ideal, controlled setting (e.g., research, publication, or subspecialty radiology)
- Efficacy is defined as the probability of benefit to individuals in a defined population from a medical technology applied for a given medical problem under ideal conditions of use.

Effectiveness

• Does it actually work?

• Everyday 'messy', ordinary, real life conditions (e.g., clinical setting, general radiologists, community practice)

25 ICRP Publications on RP in Medicine since

	Publication 85	Publication 86	Publication 87	
Pregnancy	Radiation Injuries Interventional	Accidents in Therapy	СТ	
Publication SG 2 Radiation and your Patient updated 2018	Publication 93 Digital Radiology	Publication 94 Release of Patients	Publication 97 HDR Brachy- therapy Accidents	
Publication 98 Prostate Brachy- therapy	Publication 102 Multi-detector CT	Publication 106 Radiopharma- ceuticals	Publication 112 External Beam RT Accidents	
Publication 113 Education and Training	Publication 117 Fluoroscopy	Publication 105 RP in Medicine	Publication 120 Cardiology	
Publication 121 Paediatric Radiology	Publication 127 Ion Beam Radiotherapy	Publication 128 Radiopharmaceuti cals Compendium	Publication 129 Cone Beam CT Pub	153
Pub 135 DRLs Med Imaging	Pub 139 Occupational RP Intervent Fluoro	Pub 140 RP in Therapy with Radiopharmaceuticals	Pub 147 Veterin Dose Quantities in RP	ary RF

