Effects of Occupational Exposures on Cancer Mortality in the Mayak Worker Cohort

- Scientific Implications
- Recent results
- Future directions

Dale L Preston Hirosoft International

Scientific Impact and Implications

- Demonstrated effects of chronic occupational radiation exposures from inhaled Pu aerosols on lung, liver, and bone cancer rates with no evidence of effects on other malignancies.
- Demonstrated effects of external gamma exposure on lung, liver, other solid cancer, and leukemia rates.
- Developed statistical methods and risk models:
 - Use a combination of pre-monitoring Pu exposure surrogates and post-monitoring dose estimates for Pu risk estimation.
 - Time-dependent effect modifiers for chronic exposures (age, age at exposure)
 - Manage and use Monte-Carlo dose realizations to allow for dose uncertainty effects on risk uncertainties

 Provided risk estimates for external gamma and internal alpha exposures that can be used for radiation protection and other uses.

Recent Findings: Leukemia and Liver Cancer Mortality in the MWC

Cohort description

- 27,757 workers (25% female)
- Follow-up from 1948-2015 with 998,055 person-years of follow-up
- Deaths
 - Leukemia: 96 non-CLL deaths and 21 CLL deaths
 - 40 AML, 18 CML, 1 ALL, and 37 other/NOS
 - Liver cancer: 93 deaths
 - 21 workers with no Pu exposure and 29 workers with Pu dose estimates

Recent Findings: Leukemia and Liver Cancer Mortality in the MWC

• Dosimetry

- 500 realizations of individual annual external doses from MWDS-2013 dosimetry
- 1000 realizations of individual annual internal (Pu) doses from MWDS-2016 based on urinalysis activity measurements
 - Only post-monitoring dose estimates are used for Pu dose-response analyses
 - Pu surrogate exposure categories used for pre-monitoring period
- Primary analyses based on mean of the individual annual dose realizations

Recent Findings: Leukemia Mortality in the MWC

• No indication of Pu effects on non-CLL leukemia rates

- Examined using both marrow and liver dose estimates
- Consistent with earlier findings
- Quadratic external ERR dose response with attained age effect modification
 - ERR per Gy² 0.25 (95% CI (0,04; 0.7) at age 60
 - Rapid decreasing ERR with increasing age at death proportional to $\frac{1}{age^{4.4}}$

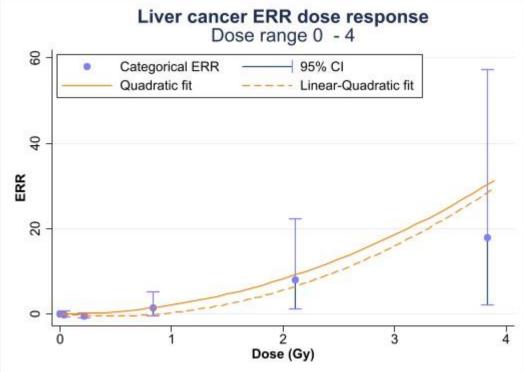
Recent Findings: Leukemia Mortality in the MWC

Significant time since exposure effect with further modification by age at death

• Quadratic dose response in three time-since -dose-received windows

Exposure period years before death	ERR/ Gy ²	95% CI			
0 - 2	1.47	(0.06; 11)			
2 – 5	2.45	(0.33; 12)			
5+	0.28	(0.06; 0.72)			
Dose Effect Modificaiton					
Attained age power	-3.05	-6.23; -0.59			

	Non-CLL death?		Total	Caselasa	
	No	Yes		Case/non- case mean dose ratio	
People	25,661	96	25,757		
	uose ratio				
Time-					
0 - 2	6.4	61.2	6.6	9.60	
2 - 5	8.6	186.9	9.3	21.70	
5+	337.6	689.3	338.9	2.00	
Total Dose	352.6	937.4	354.8	1.40	


- ERRs associated with recent doses received within 5 years of death are considerably larger than those received 5 or more years before death
 - Statistically significant effect for doses received within two years of death

Recent Findings: Liver Cancer Mortality in the MWC

- Significant linear external dose effect ERR/Gy 0.45
- Highly non-linear dose-response for Pu

	Person	Liv		
Dose Category (Gy)	years	Deaths	Cases per 10,000 PY	ERR
exposed unk dose	576,461	44	0.76	
0	330,169	22	0.67	0
0-0.1	56,763	6	1.06	-0.20
0.1-0.5	25,940	2	0.77	-0.57
00.5-1.5	5,969	3	1.2	1.4
`1.5-3	1,779	3	9.0	8.0
3-5	548	2	65	18
5-10	361	6	166	94
10+	61	5	820	535
Total	998,050	93	0.93	

• Quadratic dose response ERR/Gy² 2.15

Future Work

Dosimetry

• Finalize JEM dosimetry Pu

Risk estimation

- Extended follow-up
- Non-cancer mortality analyses
- JEM-based Pu dose-response analyses for lung, liver, and bone cancers
- Updated external exposure cancer dose-response analyses

Analytical methods

• Further development of dose uncertainty adjustment methods

MWC Mortality Projections

- Current follow-up through 2015
 - 10% of male and 15% of cohort members alive and not lost to follow-up

Oowee of death	Deaths at EOF			%change to 2025		
Cause of death	Male	Female	Total	M Me le	Fe reaka le	Tota T otal
Non Cancer	8,630	2,360	10,990	21%	33 %	24%
Lung, Liver Bone	913	133	1,046	18%	16 %	18 %
Other solid cancer	1,587	597	2,184	36%	5 0 %	40 %
Non-CLL	75	21	96	6%	19 %	9 %
Other Hematopoietic	76	31	107	38%	55 %	43 %
Total Deaths	11,281	3,142	14,423	23%	36 %	26 %
Surviving cohort members	3,786	1,773	5,559	-32%	6 -36 %	-33%

 22% of cohort members were alive now in 2016, about 11% now and 7% in 2030

Period	Status	Male	Female	Total
2016	Alive	3,786	1,773	5,559
	Non Cancer	1,302	572	1,875
Deaths	Lung, Liver Bone	122	16	138
Deaths	Other solid cancer	413	214	627
2016-	Non-CLL	3	3	6
2024	Other Hematopoietic	20	12	32
	Total Deaths	1,860	818	2,678
2025	Alive	1,926	955	2,881
	Non Cancer	496	218	713
Deatha	Lung, Liver Bone	41	5	46
Deaths	Other solid cancer	162	83	244
2025-	Non-CLL	1	1	2
2029	Other Hematopoietic	9	5	13
	Total Deaths	708	311	1,019
2030	Alive	1,217	645	1,862