Reference Organ and Effective Dose Coefficients for Common Radiographic Examinations

Calculation of Dose Coefficients Webinar 22 July 2024

Please let us know what you think!

Yeon Soo Yeom, Ph.D.

Contents

Reference phantoms – Chapter 2

- Dose coefficients for monoenergetic photons Chapter 4
- Dose coefficients for example X-ray spectra Chapter 5

Contents

Reference phantoms – Chapter 2

- Dose coefficients for monoenergetic photons Chapter 4
- Dose coefficients for example X-ray spectra Chapter 5

Reference Phantoms

Adult phantoms: ICRP Publication 110 (2009) Paediatric phantoms: ICRP Publication 143 (2020)

Reference Phantoms

Adult phantoms: ICRP Publication 110 (2009)

 Adult MF
 15MF
 10MF
 5MF
 1MF
 00MF

Reference Phantoms

Paediatric phantoms: ICRP Publication 143 (2020)

Adult MF15MF10MF5MF1MF00MF

Chapter 2

Reference Phantoms

ICRP P110 (2009) and P143 (2020)

Reference Phantoms

Significant improvement of anatomy and ٠ dosimetry against mathematical phantoms (used prior to ICRP103 Recommendations) ORNL TM-8381 (1987)

ERP M: Male; F: Female

15MF

Adult MF

ICRP P110 (2009) and P143 (2020)

5MF

10MF

00MF

1MF

Chapter 2

ADULT

Reference Phantoms – Numerical Information

		Voxel array			Voxel size (mm)	Standing height	Body mass	
	Columns	Rows	Slices	х	Y	Z	(cm)*	(kg)*
Adult M	245	127	222	2.137	2.137	8.000	176	73
Adult F	299	137	348	1.775	1.775	4.840	163	60
15-year M	407	225	586	1.250	1.250	2.832	167	56
15-year F	401	236	571	1.200	1.200	2.828	161	53
10-year M/F	419	226	576	0.990	0.990	2.425	138	32
5-year M/F	419	230	572	0.850	0.850	1.928	109	19
1-year M/F	393	248	546	0.663	0.663	1.400	76	10
Newborn M/F	345	211	716	0.663	0.663	0.663	51	3.5

*Reference values of ICRP Publication 89 (2002)

Reference Phantoms – Organs and Tissues

Red bone marrow (RBM) Colon Lung Stomach Breast Gonads Urinary bladder Oesophagus Liver Thyroid Bone surface (endosteum) Brain Salivary glands Skin

Adrenals Extrathoracic (ET) region Gall bladder Heart Kidneys Lymphatic nodes Muscle Oral mucosa Pancreas Prostate (male only) Small intestine Spleen Thymus Uterus/cervix (female only) Eye lens

- All organs and tissues considered at risk of stochastic and/or deterministic effects in the current ICRP Recommendations¹
- Organ/tissue masses matched to the ICRP-89 reference values²
- Skeletal tissues <u>implicitly</u> included in the reference phantoms^{3,4}

¹ICRP Publication 103 (2007)
 ²ICRP Publication 89 (2002)
 ³ICRP Publication 110 (2009)
 ⁴ICRP Publication 143 (2020)

Reference Phantoms – Organs and Tissues

ICRP

Reference Phantoms – Organs and Tissues

Red bone marrow (RBM)	Ac
Colon	Ex
Lung	Ga
Stomach	He
Breast	Kio
Gonads	Ly
Urinary bladder	Мι
Oesophagus	Or
Liver	Pa
Thyroid	Pr
Bone surface (endosteum)	Sn
Brain	Sp
Salivary glands	Th
Skin	Ut

drenals ktrathoracic (ET) region all bladder eart dneys mphatic nodes uscle ral mucosa ancreas ostate (male only) mall intestine bleen nymus erus/cervix (female only) Eye lens

Macroscopic skeletal regions (cortical bone, spongiosa, and medullary cavity) defined in the phantoms \rightarrow special consideration needed for skeletal dosimetry 12

Contents

• Reference phantoms – Chapter 2

Dose coefficients for monoenergetic photons – Chapter 4

Dose coefficients for example X-ray spectra – Chapter 5

- Air kerma per fluence at 1 m from source (Gy cm²)
- Organ absorbed dose per fluence at 1 m from source (Gy cm²)
- $\sum w_T \times H_T^M$ (E_{103, M}) or $\sum w_T \times H_T^F$ (E_{103, F}) per fluence at 1 m from source (Sv cm²)

- Air kerma per fluence at 1 m from source (Gy cm²)
- Organ absorbed dose per fluence at 1 m from source (Gy cm²)
- $\sum w_T \times H_T^M$ (E_{103, M}) or $\sum w_T \times H_T^F$ (E_{103, F}) per fluence at 1 m from source (Sv cm²)

- Air kerma per fluence at 1 m from source (Gy cm²)
- Organ absorbed dose per fluence at 1 m from source (Gy cm²)
- $\sum w_T \times H_T^M$ (E_{103, M}) or $\sum w_T \times H_T^F$ (E_{103, F}) per fluence at 1 m from source (Sv cm²)

- Air kerma per fluence at 1 m from source (Gy cm²)
- Organ absorbed dose per fluence at 1 m from source (Gy cm²)
- $\sum w_T \times H_T^M$ (E_{103, M}) or $\sum w_T \times H_T^F$ (E_{103, F}) per fluence at 1 m from source (Sv cm²)

Different Posture between Phantom and Patient

For some imaging examinations, e.g., chest LAT, patients raised their arms

Different Posture between Phantom and Patient

Reference Phantoms without Arms

For some imaging examinations, e.g., chest LAT, patients raised their arms

10MF

00MF

1MF

5MF

M: Male; F: Female <u>Table 4.1</u> shows which examinations were simulated using the phantoms w/wo arms

15MF

Adult MF

Monte Carlo Dose Calculations

✤ Adult dose coefficients

- Monte Carlo code: EGSnrc (ver. 4-2-3-1)
- Cross section library: XCOM database (Berger and Hubbell, 1987)
- Photon energy: 3-150 keV with 1-keV step
- Number of primary photons: 10⁷
- Particles transported: photons and secondary electrons

Paediatric dose coefficients

- Monte Carlo code: Geant4 (ver. 10.7.p03)
- Cross section library: Livermore data library (Perkins et al., 1991; Cullen et al., 1997)
- Photon energy: 1-80 keV (newborn), 1-90 keV (1 year), 1-100 keV (5 year), 1-110 keV (10 year), 1-120 keV (15 year) with 1-keV step
- Number of primary photons: 10⁸
- Particles transported: photons and secondary electrons

EGSnrc

Skeletal Dosimetry (RBM and Bone Surface)

Derived based on micron-CT skeletal images

Computed by MC simulation using the phantom

$$D(AM \text{ or } TM_{50}, x) = \int_{E} DRF(E, AM \text{ or } TM_{50}, x) \Phi(E, x) dE$$

		computed by the cirrulation doing the phantom
AM	:	Active bone marrow (i.e., red bone marrow)
TM ₅₀	:	Bone surface (endosteum)
x	:	Bone site (e.g., upper humeri spongiosa)
$D(AM \text{ or } TM_{50}, x)$:	Bone-site-specific absorbed dose to AM or TM_{50}
$\Phi(E,x)$:	Bone-site-specific energy-dependent fluence at bone site x
$DRF(E, AM \text{ or } TM_{50}, x)$:	Bone-site-specific energy-dependent photon fluence-to-skeletal dose response functions (DRFs) at bone site <i>x</i>

- ICRP P116 (2010) skeletal dosimetry method using DRFs
- Annex C in the report practical implementation method in Monte Carlo codes (MCNP, Geant4, PHITS, EGSnrc)
- ICRP P155 (in press) tabulation of the DRF values for both adult and pediatric phantoms

Examples of Monoenergetic Dose Coefficients

Fig. 4.2. Left: Absorbed dose per fluence at 1 m from the source, for red bone marrow, colon, stomach, and lungs, as a function of photon energy for scoliosis right lateral projection and male paediatric reference phantoms. Right: schematic representation of the irradiation fields showing anatomical landmarks on the 1- and 15-year-old male phantoms.

IGRP

All DCs will be provided in the electronic supplement!!!

Chapter 4

Spot-check Calculations for Quality Assurance

- For quality assurance, the dose coefficients from the primary calculations compared with those from additional calculations for some selected examinations (spot-check calculations)
 - Adult dose coefficients: Primary (EGSnrc) vs Spot-check (Geant4)
- Paediatric dose coefficients: Primary (Geant4) vs Spot-check (EGSnrc / Geant4)

Examples of Quality Assurance Results

Primary (EGSnrc) vs Spot-check (Geant4)

Fig. 4.4. Organ absorbed dose coefficients for a chest anterior-posterior examination on the newborn male reference phantom and 50 keV photons, calculated with the GEANT4 code by two different calculators. The red circles show the data of the primary calculations and the black crosses those of the spot checks (in most cases the two are superimposed).

Primary (Geant4) vs Spot-check (Geant4)

Contents

- Reference phantoms Chapter 2
- Dose coefficients for monoenergetic photons Chapter 4
- Dose coefficients for example X-ray spectra Chapter 5

Dose Coefficients for X-ray Spectra

- Air kerma per fluence at 1 m from source (Gy cm²)
- Organ absorbed dose per fluence at 1 m from source (Gy cm²)
- Organ absorbed dose per air kerma at 1 m from source (Gy Gy⁻¹)
- Organ absorbed dose per kerma area product (KAP) (Gy Gy⁻¹ cm⁻²)
- $\sum w_T \times H_T^{xxM}$ (E_{103, xxM}) or $\sum w_T \times H_T^{xxF}$ (E_{103, xxF}) per fluence at 1 m from source (Sv cm²)
- $\sum w_T \times H_T^{XXM}$ (E_{103, XXM}) or $\sum w_T \times H_T^{XXF}$ (E_{103, XXF}) per air kerma at 1 m from source (Sv Gy⁻¹)
- $\sum w_T \times H_T^{xxM}$ (E_{103, xxM}) or $\sum w_T \times H_T^{xxF}$ (E_{103, xxF}) per kerma area product (KAP) (Sv Gy⁻¹ cm⁻²)
- Effective dose per fluence at 1 m from source (Sv cm²)
- Effective dose per air kerma at 1 m from source (Sv Gy⁻¹)
- Effective dose per kerma area product (KAP) (Sv Gy⁻¹ cm⁻²)

Selected X-ray Spectra – Adult Examinations

- Tube potential (kV): 60, 80, 100, 120
- Filter: 2.5-mm AI, 3-mm AI, 3.5-mm AI

http://spekcalc.weebly.com/

Selected X-ray Spectra – Pediatric Examinations

coefficients are provid	icu.						
		Tub	e Potenti	Filtration			
Examination	00MF	01MF	05MF	10MF	15MF	mm Al	mm <u>Al+Cu</u>
Chest PA	N/A	N/A	70	70	100	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Chest AP	65	65	70	70	100	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Chest Lat	65	65	75	75	100	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Pelvis AP	65	65	70	75	80	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Abdomen AP	65	65	70	75	75	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Lumbar Spine AP	65	70	70	75	80	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Lumbar Spine Lat	65	70	70	75	80	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Thoraco-lumbar spine							
Lat	60	60	65	70	70	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Scoliosis AP	65	70	N/A	N/A	N/A	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Scoliosis PA	N/A	N/A	75	75	80	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Scoliosis Lat	65	70	76	80	85	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Skull AP	70	70	75	75	75	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Skull PA	70	70	75	75	75	2.5, 3.0, 3.5	3.00 Al +0.1Cu
Skull Lat	70	70	75	75	75	2.5, 3.0, 3.5	3.00 Al +0.1Cu

Table 5.1. Details of beam qualities considered for paediatric examinations, for which dose coefficients are provided.

00MF, newborn male and female; 01MF, 1-year-old male and female; 05MF. 5-year-old male and female; 10MF, 10-year-old male and female; 15MF, 15-year-old male and female; PA, posterior-anterior; AP, anterior-posterior; Lat, lateral; N/A, not applicable.

Calculation of Dose Coefficients for X-ray Spectra

Dose coefficient for X-ray spectra =

 \sum Relative number of photons (E) × monoenergetic dose coefficient (E)

X-ray spectral data obtained from SpekCalc

Example of Spectral Dose Coefficients (Chest AP – 5-year male)

Organ absorbed dose per fluence at 1 m from source

Tube Potential	Filtration - Al	Filtration - Cu	1 st HVL - Al	E _{mean}	R-marrow	Colon	Lungs	ST-wall	Breast	
[kV]	[mm]	[mm]	[mm]	[keV]	[mGy*cm^2]	[mGy*cm^2]	[mGy*cm^2]	[mGy*cm^2]	[mGy*cm^2]	
7	0 2.50	0.00	2.31	39.31	4.70E-11	6.99E-11	3.05E-10	2.97E-10	5.17E-10	
7	0 3.00	0.00	2.57	40.24	4.82E-11	7.09E-11	3.08E-10) 3.02E-10	5.01E-10	
7	0 3.00	0.10	3.96	44.63	5.33E-11	7.42E-11	3.17E-10) 3.20E-10	4.42E-10	
7	0 3.50	0.00	2.81	41.05	4.93E-11	7.17E-11	3.11E-10	3.07E-10	4.88E-10	
Organ absorbed dose per Ka at 1 m from source										
Tube Potential	Filtration - Al	Filtration - Cu	1 st HVL - Al	E _{mean}	R-marrow	Colon	Lungs	ST-wall	Breast	
[k]/]	[mm]	[mm]	[mm]	[لام/]	[mGy/Gy]	[mGy/Gy]	[mGy/Gy]	[mGy/Gy]	[mGy/Gy]	

נהין	[11111]	[11111]	[11111]	[kev]	լուցչ/ցչյ	[IIIGy/Gy]	[IIIGy/Gy]	[IIIGy/Gy]	[IIIGy/Gy]
70	2.50	0.00	2.31	39.31	7.76E+01	1.15E+02	5.03E+02	4.90E+02	8.54E+02
70	3.00	0.00	2.57	40.24	8.46E+01	1.24E+02	5.41E+02	5.31E+02	8.79E+02
70	3.00	0.10	3.96	44.63	1.19E+02	1.65E+02	7.08E+02	7.15E+02	9.87E+02
70	3.50	0.00	2.81	41.05	9.09E+01	1.32E+02	5.73E+02	5.66E+02	9.00E+02

Organ absorbed dose per KAP

Tube Potential	Filtration - Al	Filtration - Cu	1 st HVL - Al	E _{mean}	R-marrow	Colon	Lungs	ST-wall	Breast
[kV]	[mm]	[mm]	[mm]	[keV]	[mGy/(Gy*cm^2)]	[mGy/(Gy*cm^2)]	[mGy/(Gy*cm^2)]	[mGy/(Gy*cm^2)]	[mGy/(Gy*cm^2)]
70	2.50	0.00	2.31	39.31	1.47E-01	2.18E-01	9.50E-01	9.26E-01	1.61E+00
70	3.00	0.00	2.57	40.24	1.60E-01	2.35E-01	1.02E+00	1.00E+00	1.66E+00
70	3.00	0.10	3.96	44.63	2.25E-01	3.13E-01	1.34E+00	1.35E+00	1.86E+00
70	3.50	0.00	2.81	41.05	1.72E-01	2.50E-01	1.08E+00	1.07E+00	1.70E+00

All DCs will be provided in the electronic supplement!!!

Spot-check Calculations for Quality Assurance

Convolution vs Direct Monte Carlo Calculation (with spectra)

Fig. 5.1. Comparison of organ absorbed dose coefficients for abdomen anterior-posterior examination of the adult male reference phantom, for 60 kV tube potential and additional filtration of 3.5 mm Al, evaluated using the monoenergetic data and convolution method and direct Monte Carlo (MC) calculation employing spectral input data.

Fig. 5.2. Comparison of organ absorbed dose coefficients for abdomen anterior-posterior examination of the one-year-old reference phantom (01M), for 65 kV tube potential and additional filtration of 3.0 mm Al +0.1 mm Cu, evaluated using the monoenergetic data and convolution method and direct Monte Carlo (MC) calculation employing spectral input data.

Summary

• Reference phantoms – Chapter 2

- Adult reference voxel phantoms ICRP Publication 110
- Pediatric reference voxel phantoms (15-yr, 10-yr, 5-yr, 1-yr, newborn) ICRP Publication 143
- Dose coefficients for monoenergetic photons Chapter 4
 - Adults: 3-150 keV with 1-keV step (EGSnrc)
 - Children: 1-80 (0-yr), -90 (1-yr), -100 (5-yr), -110 (10-yr), -120 (15-yr) keV with 1-keV step (Geant4)
 - Quality assurance: Primary vs Spot-check (additional calculations)
- Dose coefficients for example X-ray spectra Chapter 5
 - 12 spectra for adults and 28 spectra for children (obtained from SpekCalc)
 - Convolution of monoenergetic dose coefficients with the spectra (relative number of photons)
 - Quality assurance: Convolution vs Direct Monte Carlo calculation

www.icrp.org

