WP on New Radiotherapies

Aurelie ISAMBERT Ivan WILLIAMS

On behalf of the WP members

Milano Oct 3, 2024

WP bringing together members of 3 ICRP Committees

- C1 Radiation effects
- C2 Doses From Radiation Exposure
- C3 RP in medicine

List of members

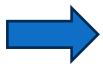
ANDERSSON Martin	Committee 2	KRON Tomas	Affiliated to TG 116 (C3)
BADIE Christophe	Committee 1	M Mahesh	Committee 3
GROS Sebastien	Affiliated to TG 116 (C3)	SMALL Bill	Committee 3
HOSONO Makoto	Committee 3	WILLIAMS Ivan	Committee 3 (WP leader)
ISAMBERT Aurelie	Committee 3 (WP leader)	WOLOSCHAK Gayle	Committee 1

Purpose

To monitor scientific presentations and publications on new radio therapies with different radiobiological behavior than classic EBRT.

Focus on key new therapies to include:

FLASH, Spatial fractionation, Alpha therapies, Heavy Ion Tx, and a few others (BNCT)

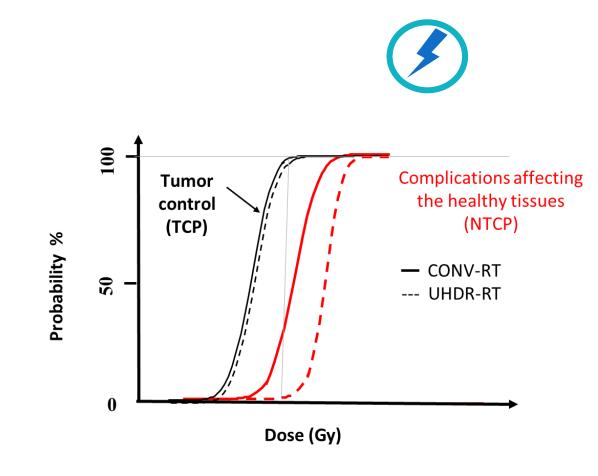

Ultimate goal - when might literature be mature for ICRP Guidance / Recommendations (creation of a task group to be considered)

Purpose

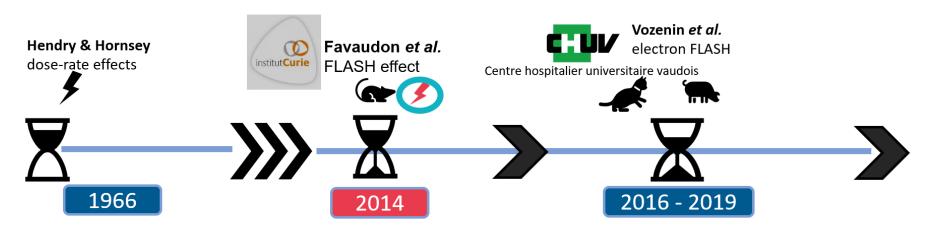
To monitor scientific presentations and publications on new radio therapies with different radiobiological behavior than classic EBRT.

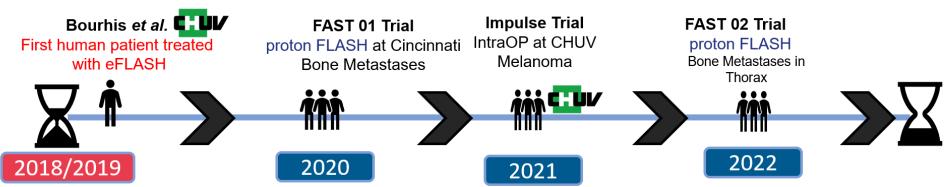
Focus on key new therapies to include:

FLASH, Spatial fractionation, Alpha therapies, Heavy Ion Tx, and a few others (BNCT)



Ultimate goal - when might literature be mature for ICRP Guidance / Recommendations (creation of a task group to be considered)


1/ FLASH: UHDR therapy


- FLASH effect is the radiobiological effect with the improvement of healthy tissues protection when delivering the prescribed dose at UHDR
- UHDR-RT is the delivery of higher dose rates with a pulse of radiation (40-150+ Gy/s and irradiation times below 1s)
- **Expected benefits compared to CONV-RT:**
 - Low normal tissue toxicity
 - Iso-efficient tumor control

FLASH: UHDR therapy (courtesy, A. Chaikh)

FLASH radiation therapy: state of the art

FLASH: UHDR therapy (courtesy, A. Chaikh)

Questions to be resolved ...

- Dose fractionation schedules for clinical use: biological effect is not clear
- Physical parameters : optimal parameters to obtain the FLASH effect not clear
- Dosimeters for absolute dosimetry (ionization chamber, diamond, film, etc):
 issue of saturation for most common reference dosimeters (IC)
- Quality Assurance (QA) tools for planning and dosimetric verification to be developed
- Robust dose planification to be developed
- In vivo dosimetry, imaging for patient positioning : on going developments
- Radiation protection shielding: patients, staff & public

... Very active domain

FLASH: UHDR therapy

With a call for caution and further investigations...

Dose- and Volume-Limiting Late Toxicity of FLASH Radiotherapy in Cats with Squamous Cell Carcinoma of the Nasal Planum and in Mini Pigs

Carla Rohrer Bley¹, Friederike Wolf¹, Patrik Gonçalves Jorge^{2,3,4}, Veljko Grilj^{2,3,4}, Ioannis Petridis^{2,3}, Benoit Petit^{2,3}, Till T. Böhlen⁴, Raphael Moeckli⁴, Charles Limoli⁵, Jean Bourhis², Valeria Meier¹, and Marie-Catherine Vozenin^{2,3}

Clin Cancer Res. 2022 Sep 1;28(17):3814-3823

EDITORIAL

Taking Care with FLASH Radiation Therapy Jolyon Hendry, PhD, DSc

Medical Physics Department, Christie Hospital, Manchester, United Kingdom

Int J Radiat Oncol Biol Phys. 2020 Jun 1;107(2):239-242.

Results: In cats, acute side effects were mild and similar in both arms. The trial was prematurely interrupted due to maxillary bone necrosis

The reported outcomes point to the caveats of translating single-high-dose FLASH-radiotherapy and emphasizes the need for caution and further investigations

2/ Alphatherapies (courtesy, M. Mahesh)

- Targeted α -therapy (TAT) is one of the most promising fields in novel targeted cancer therapy, with several early and late-stage clinical trials for neuroendocrine tumors and metastatic prostate cancer, e.g. :
 - 223Ra-dichloride, for treatment of bone metastases in castration-resistant prostate cancer (mCRPC) is the first US FDA approved α -therapy
 - 225Ac-PSMA-617 for treatment of prostate cancer
- Significant interest & investment in additional early-phase studies

Feuerecker et al, J Nucl Med 2023; 64:685–692

Alphatherapies : on going clinical trials

Overview of ongoing (2022) TAT clinical trials

TABLE 1 Overview of ongoing targeted alpha therapy clinical trials.

Radiopharmaceutical	Ligand	Cancer type	Special notes	Clinical trial*
²¹¹ At-BC8-B10	BC8-B10, antibody targeting CD45	Different types of acute leukemia or myelodysplastic syndrome		NCT03128034, phase I/II, recruiting (2017) NCT03670966, phase I/II, recruiting (2019) NCT04083183, phase I/II, recruiting (2020)
²²⁵ Ac-Lintuzumab	Lintuzumab, antibody targeting CD33	Acute myeloid leukemia	In combination with other chemotherapeutic agents	NCT03441048, phase I, recruiting (2018) NCT03867682, phase I/II, recruiting (2020) NCT03932318, phase I/II, not yet recruiting (2023)
²¹² Pb-DOTAMTATE	DOTAMTATE, somatostatin analog	Somatostatin positive neuroendocrine tumors		NCT03466216, phase I, recruiting (2018) NCT05153772, phase II, recruiting (2021)
BAY2315497 (²²⁷ Th)	Antibody targeting PSMA	Metastatic castration resistant prostate cancer	In combination with darolutamide	NCT03724747, phase I, active but not recruiting (2018)
²²⁵ Ac-FPI-1434	FPI-1175, antibody targeting insulin-like growth factor-1 receptor (IGF-1R)	Advanced solid tumors		NCT03746431, phase I/II, recruiting (2019)
BAY2701439 (²²⁷ Th)	Antibody targeting HER2	Advanced cancers expressing the HER2 protein		NCT04147819, phase I, recruiting (2020)
JNJ-69086420 (²²⁵ Ac)	H11B6, antibody targeting human kallikrein-2 (hk2)	Advanced and metastatic prostate cancer		NCT04644770, phase I, recruiting (2020)
²²⁵ Ac-J591	J591, monoclonal antibody against PSMA	Hormone-sensitive metastatic prostate cancer	In combination with androgen deprivation	NCT04946370, phase I/II, recruiting (2021) NCT05567770, phase 1, not yet recruiting

Pallares et al, Front. Med. 9:1020188, 2022

Clinical trials (2024) of novel RN therapeutics for mCRPC

Table 1 - Clinical trials of novel targeted radionuclide therapeutics for metastatic castration-resistant prostate cancer a

Trial	Vector	Isotope	Target	Phase	ECD	Sponsor
NCT05458544 LUCIDA	Ludotadipep	¹⁷⁷ Lu	PSMA	1/2a	June 2025	FutureChem
NCT03822871	CTT1403	¹⁷⁷ Lu	PSMA	1	Completed	Cancer Targeted Technology
NCT05413850	Radiohybrid-PSMA-10.1	¹⁷⁷ Lu	PSMA	1/2	Oct 2026	Blue Earth Therapeutics
NCT06343038 PROGNOSTICS	Sibu-DAB	¹⁶¹ Tb	PSMA	1	June 2028	University Hospital Basel
NCT04868604 SECURE	SAR-bis-PSMA (Abefolastat)	⁶⁷ Cu	PSMA	1/2a	Sept 2026	Clarity Pharmaceuticals
NCT05633160 COMBAT	SAR-BBN	⁶⁷ Cu	GRPR	1	May 2026	Clarity Pharmaceuticals
NCT04597411 ACTION	PSMA-617	²²⁵ Ac	PSMA	1	Jan 2027	Endocyte
NCT05983198 SATISFACTION	PSMA-R2	²²⁵ Ac	PSMA	1/2	Aug 2026	Novartis
NCT06217822 PANTHA	PSMA-Trillium (BAY3563254)	²²⁵ Ac	PSMA	1, FIH	June 2027	Bayer
NCT06052306	Macropa-pelgifatamab (BAY3546828)	²²⁵ Ac	PSMA	1, FIH	June 2027	Bayer
NCT05219500 TATCIST	FPI-2265 (PSMA-I&T)	²²⁵ Ac	PSMA	2	Dec 2025	Fusion Pharmaceuticals
NCT06402331 ALPHABREAK	FPI-2265 (PSMA-I&T)	²²⁵ Ac	PSMA	2/3	Jan 2031	Fusion Pharmaceuticals
NCT05725070	NG001	²¹² Pb	PSMA	0/1	July 2023	ARTBIO
NCT03724747	BAY2315497	²²⁷ Th	PSMA	1, FIH	Nov 2024	Bayer

ECD = estimated completion date; FIH = first in human.

K. Hébert et al, New Drugs for Targeted Radionuclide Therapy in Metastatic Prostate Cancer, Eur Urol Focus (August 2024)

a Ongoing trials and trials that have completed recruitment complete with results pending, excluding trials at the most advanced clinical stage such as for [177Lu]Lu-PSMA-617 and [177Lu]Lu-I&T. Data retrieved from ClinicalTrials.gov in May 2024.

Alphatherapies

Ac225-PSMA - Results of the WARMTH Act study (2024)

- 488 patients from 7 centres in Australia, India, Germany, and South Africa.
- Mostly administered as a last-line compassionate treatment in patients who have not responded to or are unfit for other lines of therapy
- The investigation of the safety of ²²⁵Ac-PSMA RLT was limited to the assessment of salivary gland, bone marrow, and renal toxicities as they are the most commonly known side-effects of this treatment modality
- Conclusion of the study: ²²⁵Ac-PSMA RLT shows a substantial antitumour effect in mCRPC and represents a viable therapy option in patients treated with previous lines of approved agents. Xerostomia is a common side-effect. Severe bone marrow and renal toxicity are less common adverse events.
- The optimum dosing of [225Ac]Ac-PSMA-617 is being investigated further in the ongoing phase 1 dose-escalation AcTION trial (NCT04597411)

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Alphatherapies (courtesy, M. Mahesh)

- "Field of TAT is currently one of the most promising in innovative targeted cancer therapy"
- "Despite profound excitement and incredible clinical potential, it is also important to emphasize need to understand short- and long-term toxicity of TAT and identification of suitable therapeutic combination partners"

Feuerecker et al, J Nucl Med 2023; 64:685–692

Alphatherapies (courtesy, M. Mahesh)

Challenges and special care

- Scarcity of alpha emitters + at a reasonable cost * but should be solved in the coming years **
- Patient Precise dosimetry calculations are still challenging, particularly due to the difficulty *:
 - > to perform Ac225-imaging by SPECT
 - > to consider the impact of the daughter radionuclides on the dose distribution

Occupational and Public exposures: external exposure is low

However, special care needed such as:

- While administering doses, avoid skin contamination, inhalation and ingestion
- Keep family members and children away from patients soon after treatment
- In case patients after administration requires hospital-admission or surgery or die careful considerations to be given to staff exposures and contamination of crematoriums or burial places

Unanswered questions and pleading for ...

- What is the relative biological effectiveness endpoint being considered for any of these approaches?
- RBE for Nuclear Medicine is related to the irradiating nuclei and the carrier molecule, how do we engage with this?
- How should the dose, a historically macroscopic parameter, for theranostics be calculated?
- FLASH RT has a number of unresolved questions around minimum dose, integrated dose rate compared with local dose rate

 Results of the studies deeply rely on the parameters used to deliver the doses (eg beams characteristics/structures, delivered dose etc)

Need for publications to contain the necessary information *to* be able to replicate the results within or appended to the article

aurelie.isambert@irsn.fr

ivan.williams@arpansa.gov.au

Thank you!