Challenges of Radiological Protection in Research and Society referring to Medical Field, Milan, Italy, 3 Oct 2024

TG 108: Optimisation in digital radiology

Mika Kortesniemi Chief medical Physicist, Adjunct Professor, PhD HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland ICRP Committee 3 on Protection in Medicine

Nothing to Disclose

Balancing

image

quality

and dose

Medical physicist background

mika.kortesniemi@hus.fi

ICRP Task Group 108

Optimisation of Radiological Protection in Digital Radiography, Fluoroscopy, and CT in Medical Imaging

> Part 1 – general aspects (available: ICRP Publication 154) Part 2 – modality specific aspects

Image quality as the main driver of optimisation

Any general definition of image quality must address the effectiveness with which the image can be used **for its intended task**.

The whole imaging chain must be evaluated

mika.kortesniemi@hus.fi

Factors affecting dose and image quality in digital imaging

The clinical value of images is dependent on physical characteristics of the imaging method (~medical physicist), image capture and presentation system (~radiographer) and the interpreter (~radiologist).

IGRP

Multiprofessionality in optimisation

Components and levels required for continuously improving optimisation by ICRP (graded approach)

Patient dose audits

- Knowledge of the radiation doses delivered to patients is the first step in the optimisation process and personnel performing the exams should be involved in the process of dose audit.
- Multi-professional team helps to ensure that results of dose surveys are fed back to operators who make appropriate changes to imaging parameters.
- The radiation doses used to produce the images should have been adjusted to the minimum level required to provide an adequate image quality.

CT dose parameter views in patient dose monitoring system

CT dose estimate for fetus in late pregnancy (pulmonary embolism scan)

Scan Parameters	
Protocol	Chest
CT Scanner	Siemens Definition Edge
kVp	100
Collimation	38.4 mm
Bowtie filter	body
mAs	200
nCTDIw	3.86 mGy
Pitch	1
TCM applied	Yes
CTDIvol	7.72 mGy

	Organ Dose			
Organ/Tissue Na			Dose (mGy)	
	Adrenals		4.96	
an)	Bladder		0.06	
any	Bone Surface		5.43	
	Brain		0.15	
	Breast		11.93	
	Colon		0.63	
	Extrathoracic Region		3.96	
Fetal brain			0.09	
Fetal skeleton			0.92	
Fetal soft tissue			0.34	
Fetus total			0.31	
	Gonads		0.14	
	Heart		8.22	
	Kidneys		1.59	
	Lens of the eye		0.33	
	Liver		8.77	
	Lung		8.29	
	Oesophagus		4.28	
	Pancreas		1.65	
	Skin		2.25	
	Small intestine		1.44	
	Spleen		7.13	
	Stomach		6.88	
	Thymus		7.32	
	Thyroid		1.51	
er, Finland	Uterus/Cervix (female Prostate (male)) or	1.17	

Mika Kortesniemi, VirtualDose / HUS Diagnostic Center, Finland

Gradual unification of core RP components by data-driven methods and processes

Evolved QA methods enable more effective patient-specific optimisation with clinical relevance Automated referral guidance and procolling connect optimisation and justification more closely together

Clinical Decision Support (CDS) example: ESR iGuide (with >1600 indications)

ESR

From referrals (CDS) to automated protocoling

> AJR Am J Roentgenol. 2024 Jan 17. doi: 10.2214/AJR.23.29806. Online ahead of print.

Implementation of an Institution-Wide Rules-Based Automated CT Protocoling System

Ryan Chung¹, John P Demers², Roberta Tiberio², Cristy A Savage³, Frederick McNulty³, Markus Stout², Avinash Kambadakone¹, Matthew D Gilman¹, Amita Sharma⁴, Tarik K Alkasab⁵

Affiliations + expand

PMID: 38230904 DOI: 10.2214/AJR.23.29806

Full Text Am J Roentgenol
ACTIONS
 '' Cite
Collections

FULL TEXT LINKS

Abstract	Comparison of manual and automatic exam protocoling for CT imaging by place of service			
Background: and can caus system on ex included 317, unspecified s implemented or directed tr	Mean times from order entry to protocol assignment (in hours)	Manually protocoled exams	Automatically protocoled exams	S
	Emergency department exams	2.1	0.2	
	Inpatient exams	3.5	0.5	rs
	Outpatient exams	1,289 (about 53 days)	361.7 (about 15 days)	

From referrals (CDS) to automated protocoling

1.Embrace data-driven future – get prepared and trained for it (Al is just a part of it) **2.Team up** – radiologists, medical physicists and radiographers - foster multiprofessionality 3. Practice graded approach to QA and optimisation – one step at the time A. Short term: Utilise free and easily available tools (e.g. patient dose audits) B. Medium term: Enhance objectivity, coverage and efficiency by automated applications (e.g. dose monitoring systems) C. Long term: Aim for patient-specific methods adaptive to task (e.g. CDS & automated protocoling)

Components and levels required for continuously

Now Available!

Publication 154 Optimisation of Radiological Protection in Digital Radiology Techniques for Medical Imaging

ICRP TG108. WIP

I acknowledge contributions from the other members of ICRP Task Group 108

Kimberly ApplegateColin MartinJohn DamilakisKwan Hoong NgIrene Hernández-GirónMaria PerezDina HusseinyDavid SuttonHelen KhouryJenia Vassileva

Thank you for your attention

