

Radiobiological basis of hypofractionation (SBRT/Radiosurgery) and impact on patient Radiation Protection

Challenges of Radiological Protection in Research and Society referring to Medical Field

October 3/2024 Milan, Italy Sala Napoleonica/Via Sant'Antonio, 12 Università di Milano Monica Mangoni University of Florence

Stereotactic RT

- High dose per fraction
- Small volumes
- Single or very few fractions

- Low dose per fraction
- Large volumes
- Multiple fractions

Prostate Cancer SBRT 36.25 Gy in 5 fractions Tracking on fiducials : 3 mm margins

Prostate Cancer Conv-RT 78 Gy in 38 fractions No tracking : 5 mm margins

Kinj, R.; Bourhis, J. How Stereotactic Radiotherapy Changed the Landscape in Cancer Care. *Cancers* **2023**, *15*, 1734.

VS

The «Rs»

Re-oxygenation

Re-oxygenation

radiosurgery

Re-oxygenation

moderate hypofractionation

radiosurgery

Repair

REPAIR OF SUBLETHAL DAMAGE

Redistribution

Redistribution

Repopulation

Repopulation

Antigen-induced damage and immune response

Boustani J, Grapin M, Laurent PA, Apetoh L, Mirjolet C.

The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response. Cancers (Basel). 2019 Jun 20;11(6):860.

In situ vaccine

Demaria and Formenti

T-cell dependent radiation response

Abscopal effect

RT + immunotherapy

Rev in

B. Yu et al. "Killing two birds with one stone: Abscopal effect mechanism and its application prospect in radiotherapy" *Critical Reviews in Oncology / Hematology (2024)*

Song et al. Int J Radiation Oncol Biol Phys, Vol. 110, No. 1, pp. 21e34, 2021

Song et al. Int J Radiation Oncol Biol Phys, Vol. 110, No. 1, pp. 21e34, 2021

Indirect death

STUD

The linear quadratic model

Kim MS, et al. Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery. Radiat Oncol J. 2015

Implications of high dose per fraction on normal tissue

Relationship between isoeffective dose and dose per fraction

Implications of high dose per fraction on normal tissue

Relationship between isoeffective dose and dose per fraction

Implications of high dose per fraction on normal tissue

"vascular mediated" mechanisms have been suggested as the primary mode of radiation-induced late normal-tissue effects

Implications of high dose per fraction on normal tissue

- radiation-induced vascular damage in normal tissue progresses slowly
- ischemic cell death and necrotic breakdown will gradually develop in normal tissues
- later cell death and tissue damage occur in a dose-dependent manner in normal tissues
- take measures to avoid normal-tissue damage: patient selection, target delineation, dose prescription, and treatment delivery accuracy during SBRT/SRS.
- imperative to limit the volume of normal tissues exposed to high doses per fraction