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The key areas of focus will include:

1.

Quality assurance and validation of Al systems. It is essential to develop rigorous
quality assurance protocols for Al-powered tools before theirimplementation in clinical
practice. This includes establishing criteria for validating the accuracy, reliability, and
safety of Al algorithms used in medical imaging, radiation therapy, and other medical
radiological applications.

Radiation dose estimation and optimization. Al technologies should support dose
optimization strategies that minimize patient and operator exposure while maintaining
diagnostic quality. The Task Group will provide guidance on how Al can be leveraged
to improve radiation protection practices in medical and other settings.

Ethical and legal considerations. Al systems must adhere to ethical standards,
particularly in terms of patient consent, data privacy, and transparency. The Task
Group will assess how Al technologies can be aligned with existing ethical frameworks
for radiological protection.

Al in non-medical radiological protection. In non-medical sectors, Al is increasingly
being utilized in areas such as environmental monitoring, and nuclear safety. The Task
Group will provide recommendations on the use of Al for ensuring the safe handling
of radioactive materials and for improving radiation monitoring and emergency
response systems.

Training and education for radiological protection personnel. As Al systems are
introduced into radiological protection workflows, there is a need for targeted training
programs to ensure that personnel are proficient in the use of these technologies. The
Task Group will recommend strategies for integrating Al education into radiological
protection training curricula. There is a critical need for communication amongst
colleagues and the public in using Al as a tool that will not replace expert workers but
will enhance them.
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Key areas of focus: QA of Al tools

nature QA and validation of Al systems

Explore content ¥  About the journal ~  Publish with us v Subscribe

In imaging and radiotherapy

nature > news feature » article

IS needed to ensure

NEWS FEATURE | 21 August 2024

The testing of Al in medicineisa Accuracy
mess. Here’s how it should be done

Hundreds of medical algorithms have been approved on basis of limited clinical data.
Scientists are debating who should test these tools and how best to do it.
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€OVID-19 {coronavirus disease 2019) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a
strain of coronavirus. The first cases were seen in Wuhan, China, in late December 2019 before spreading globally. The current outbreak was
officially recognized as a pandemic by the World Health Organization (WHO) on 11 March 2020.

Currently Reverse transcription polymerase chain reaction (RT-PCR) is used for diagnosis of the COVID-19. X-ray machines are widely
available and provide images for diagnosis quickly so chest X-ray images can be very useful in early diagnosis of COVID-19

Content

Dataset is organized into 2 folders (train, test) and bath train and test contain 3 subfolders (!
contains total 6432 x-ray images and i
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Checklist for Al in medical imaging (CLAIM)
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Key areas of focus: Radiation dose estimation & optimization

Al dose image Al dose image
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Deep learning CT reconstruction

Input image DNN Output image DNN learns by adjusting various

parameters via back-propagation:

* high contrast resolution

low contrast resolution

image noise

image texture

Ground truth

CT number accuracy
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Image quality improvement

PLOS ONE
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Establishment of DRLs using Al
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A neural network-enhanced methodology for the rapid establishment of
local DRLs in interventional radiology: EVAR as a case example

Eleftherios Tzanis, John Damilakis
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Patient dosimetry: How do we estimate patient doses?

Evolution of Computerized Phantoms...
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Patient-specific and equipment specific dosimetry




Real time personalized patient dosimetry

We need

* Equipment-specific dosimetry

» True patient-specific dosimetry

* Protocol-specific dosimetry
« Real-time dosimetry

for organ and tissue dose estimation




Real time personalized dosimetry

Organ dose information will be automatically incorporated into

the structured reporting templates so referring physicians will

have complete information about patient doses and risks
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Al-powered patient radiation dose prediction

Al-assisted organ dose estimation

Ewopesn ooy
gk g 1007 OIS0 220875

ropen Racogy

COMPUTED TOMOGRAPHY

A novel methodology to train and deploy a machine learning model
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Eleftherios Tzanis - John Damilakis"

Peceec 8 e sy 2022 Aceped 19 Wrch 2022
© o oy o pen Sy o Rodiogy 2022

Abstract
Objectves
spec

i C

International Commission
on Radiological Protection

European Radiology, April 2022

CTimage

Masked CT
image

— +| Organ's HU values —

Mask image Input
Layer

An automated ML-based methodology for chest and abdomen CT
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Submitted for publication

Rapid workflow based on DNN to estimate organ doses from CT

Features: mA, scan length, WED

Ground truth: Patient-specific doses
DNN implemented in MATLAB
3 hidden layers with ReL.U
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An automated ML-based methodology for CT
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An automated ML-based methodology for CT
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An automated ML-based methodology for CT

Physica Medica 117 (2024) 103195
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A fully automated machine learning-based methodology for personalized
radiation dose assessment in thoracic and abdomen CT

Eleftherios Tzanis, John Stratakis, Marios Myronakis, John Damilakis
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A machine learning-based pipeline for .-

multi-organ/tissue patient-specific
radiation dosimetry in CT

Data preprocessing

CT scan
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dose image Input
layer

Radiation dose
prediction deep neural

networks were
developed for 30
different organs/tissues
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/

Organ/tissue-specific
training array

The accuracy and time-efficiency of the developed
pipeline compose a useful tool for personalized
dosimetry in CT. By adopting the proposed workflow,

institutions can utilize an automated pipeline for patient-

specific dosimetry in CT. The developed code and dose
prediction models are provided as open source.
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An automated ML-based methodology for CT

Evaluation of the segmentation models

Segmentation models

Jaccard score

Dice score

SD

Range

SD

Range

Lungs

0.83-0.95

0.91-0.97

Liver

0.59-0.97

0.74-0.98

Spleen

0.58-0.94

0.73-0.97

Stomach

0.43-0.94

0.60-0.97

Kidneys

0.60-0.97

0.75-0.98

Patient

0.76-0.96

0.86-0.98

SD = standard deviation




.
An automated ML-based methodology for CT

Organ doses estimated with the dose prediction DNN model and MC simulations

DNN (mGy)* MC (mGy)*

Lungs 12.0 (4.1) 12.7 (5.1)

Liver 18.1 (4.6) 18.1 (4.5)

Spleen 18.3 (4.5) 18.7 (4.2)

Stomach 17.7 (4.4) 17.7 (4.1)

Kidneys 18.6 (4.3) 18.4 (4.0)

*Mean values (SD), DNN = deep neural network, MC = Monte Carlo




enerative Adversarial Networks (GANS)
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I-Dose: a new web-based platform

DEPARTMENT OF MEDICAL PHYSICS
SCHOOL OF MEDICINE - UNIVERSITY OF CRETE

Personalized organ dose estimation from radiological examinations SINFONIA
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Key areas of focus: Ethical & legal considerations

Main ethical and legal considerations
Risks for privacy and security
Risks associated with lack of transparency

Risks of biases

Gaps In regulations (e.g., in the field of Al accountability/liability)

Gaps In certification of Al products




Key areas of focus: E&T for radiological protection personnel

Key strategies to integrate Al education into RP curricula
Al-powered virtual assistants
Hands-on simulations

Modular training ptograms

Collaborative learning with Al experts




Al presents unigue challenges and amazing opportunities

Challenges/Issues Technical solutions and tools (examples) Benefits

» Bias and discrimination » Federated Learning, Swarm learning Improved, fast workflows
Lack of transparency Generative Al Available at all times

Dependence OCR DL Reduction of human error

Lack of regulation Explainable Al Reduction of cost

Security and privacy concerns Low code/no code Al Informed patient care
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