Challenges of RP in Research and Society Referring to Medical Field Milan, October 3, 2024

ICRP C3 WP on AI in Imaging and Radiotherapy

J. Damilakis, MSc, PhD, FIOMP, FIUPESM Professor and Chairman School of Medicine University of Crete Greece

ICRP Working Party on AI

Working Party

on radiation protection and Al in medical imaging and radiotherapy

International Commission on Radiological Protection

ICRP Working Party on AI

Draft Terms of Referen

Artificial Intelligence (A

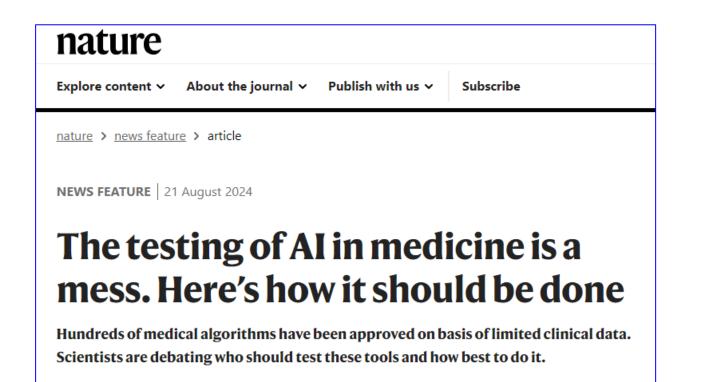
A Task Group Approved by the Main Co

Background

The integration of artificial intelligence (Al non-medical settings, has grown significan potential in enhancing diagnostic accuracy in various radiological applications. Howeve concerns regarding safety, ethical consider context of radiological protection. The imp and quality assurance in radiological proc global application of Al in medicine exp treatment planning, and decision suppor innovations are properly integrated within e

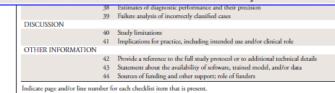
The rationale for the creation of a dedicate need to ensure that the adoption of AI alig protection. AI introduces new complexities and potential biases in clinical decision-m Furthermore, medical applications of AI, delivery, present both opportunities and ch to protect patients, staff, and the public.

ICRP has long been at the forefront of pr establishment of a Task Group focused advancements and the unique challenges transform radiological practices, but wit introduce risks to patient safety, radiation include an explanation of the uncertainties


The key areas of focus will include:


- Quality assurance and validation of AI systems. It is essential to develop rigorous quality assurance protocols for AI-powered tools before their implementation in clinical practice. This includes establishing criteria for validating the accuracy, reliability, and safety of AI algorithms used in medical imaging, radiation therapy, and other medical radiological applications.
- Radiation dose estimation and optimization. Al technologies should support dose optimization strategies that minimize patient and operator exposure while maintaining diagnostic quality. The Task Group will provide guidance on how Al can be leveraged to improve radiation protection practices in medical and other settings.
- 3. Ethical and legal considerations. Al systems must adhere to ethical standards, particularly in terms of patient consent, data privacy, and transparency. The Task Group will assess how Al technologies can be aligned with existing ethical frameworks for radiological protection.
- 4. Al in non-medical radiological protection. In non-medical sectors, Al is increasingly being utilized in areas such as environmental monitoring, and nuclear safety. The Task Group will provide recommendations on the use of Al for ensuring the safe handling of radioactive materials and for improving radiation monitoring and emergency response systems.
- 5. Training and education for radiological protection personnel. As AI systems are introduced into radiological protection workflows, there is a need for targeted training programs to ensure that personnel are proficient in the use of these technologies. The Task Group will recommend strategies for integrating AI education into radiological protection training curricula. There is a critical need for communication amongst colleagues and the public in using AI as a tool that will not replace expert workers but will enhance them.

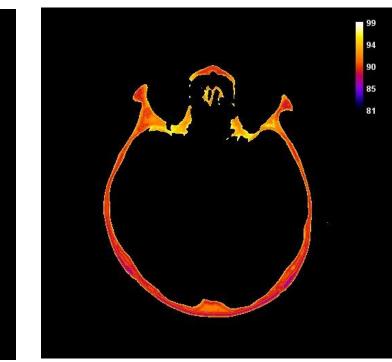
Key areas of focus: QA of AI tools


Data quality

← → C 😁 kaggle.com/datasets/paultimothymo	ooney/chest-xray-pneumonia			달 역 ☆ 😈 🗋 🥃) 🚜 🖸 🕆 🗆 🖏 🤅				
🗅 Νέος φάκελος 🗅 Entertainment 🗅 Funding opportuni	i D MP and Rad websit D Udemy, Coursera etc D ML D Pharma	🖿 BIG DATABASES 🛛 🛞 UoC Webmail :: \	Wel Sci-Hub: removing 🗅 GAI	🗣 Websign 🗜 Home - EIBIR 🔤 Files - ownClo	oud 😵 Xtalks 🔉 >>				
≡ kaggle	Q Search				Sign In Register				
+ Create	PAUL MOONEY - UPDATED 6 YEARS AGO		6008 New Notebook	🗄 Download (2 GB) 🥥 🚦					
Home Competitions Datasets	Chest X-Ray Images	(Pneumonia)							
🔏 Models		← → C 🔤 kaggle.com/data	asets/prashant268/chest-xray-covid19-pne	umonia				ि 📄 😋 🏫 🖸 । 🛃	D 🖇
<> Code	Data Card Code (2161) Discussion (59)	🗅 Νέος φάκελος 🕒 Entertainment	Funding opportuni Implement MP and Rad we	osit 🗅 Udemy, Coursera etc 🗅 ML 🗅 Ph	narma 🖿 BIG DATABASES 🥮 UoC Webmail ::	Wel Sci-Hub: removing 🗅 GAI	🗘 Websign 🔥 Home - EIBIR 🏧	Files - ownCloud 🛛 😵 Xtalks	*
Discussions		≡ kaggle		Q Search				Sign In	Register
 On Learn ✓ More 	About Dataset	+ Create		PRASHANT PATEL - UPDATED 3 YEARS AGO		158 New Notebook	🕁 Download (2 GB) 🥥 🚦		
	Context http://www.cell.com/cell/fulltext/S0092-8674(18)30154	Ø Home							
	nttp://www.cell.com/cell/tulitext/S0092-8674(18/30154-	♀ Competitions		Chest X-ray (Covid	-19 & Pneumonia)		V HOM		
	Normal Bacterial Pneumonia	🖬 Datasets		Dataset contains chest x-ray images of Cov	_				
	3 6 3 5	🔏 Models							
		<> Code		Data Card Code (96) Discussion (2)					
		Discussions							
		😥 Learn		About Dataset			Usability ③ 5.00		
		✓ More		Context			License		
				COVID-19 (coronavirus disease 2019) is an infect strain of coronavirus. The first cases were seen in officially recognized as a pandemic by the World H	Wuhan, China, in late December 2019 before sp		Unknown Expected update frequency	1	
				Currently Reverse transcription polymerase chai	n reaction (RT-PCR) is used for diagnosis of the		Not specified		
				available and provide images for diagnosis quickly	v so chest X-ray images can be very useful in ear	rly diagnosis of COVID-19.	Tags		
				Content			Computer Science Health		
ICR?				Dataset is organized into 2 folders (train, test) and contains total 6432 x-ray images and test data ha		D19, PNEUMONIA, NORMAL). DataSet	Deep Learning		
				Acknowledgements			Coronavirus CNN		
International Commission on Radiological Protection				Images are collected from various publicly availab	le resources. If you use the data for research ple	ease give credit to authors:			

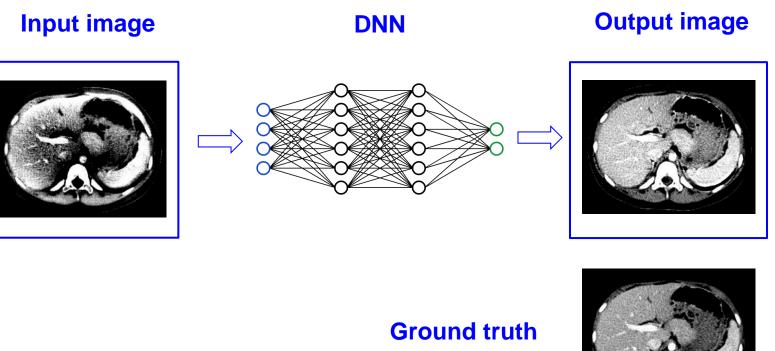
Checklist for AI in medical imaging (CLAIM)

Data 7 Data sources Audesuchase Eelleer W Asselbergs, Aldo Badano, Bettina Baessler, Bayarbaatar Data 7 Data sources el B. Brismar, Giovanni E. Cacciamani, John A. Carrino, Chiang, Tessa S. Cook, Renato Cuocolo, John Dani- Garlo N. De Cecco, Hesham Elhalawani, Guilermo edorov, Benjamin Fine, Adam E. Flanders, Judy Wawira er, Safwan S. Halabi, Sven Haller, William Hsu, Krishna 10 Selection of data subsets er, Safwan S. Halabi, Sven Haller, William Hsu, Krishna 11 De-identification methods -Cramer, Apostolos H. Karantanas, Felipe C. Kitamura, h, Elmar Kotter, Elizabeth A. Krupinski, Curapiski, Curapiski, Curapiski, Curapiski, Curapiski, Curapiski, Curapiski, Curapiski, Setti ali mage acquisition protocol viasage acquisition protocol Reference Standard 14 Definition of method(s) used to obtain reference standard s Papathomas, Katja Pinker-Domenig, Daniel Pinto dos ros Protonotarios, Mauricio Reyes, Veronica Rotemberg, el Salinas-Miranda, Francesco Sardanelli, Mark E. Sch- ge Sauricio Reyes, Veronica Rotemberg, el Salinas-Miranda, Francesco Sardanelli, Mark E. Sch- ger Laak, Peter M. A. van Ooijen, Vasantha K. Venugopal, er Laak, Peter M. A. van Ooijen, Vasantha K. Venugopal,	Radiology:Artificial Intelligence		Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 2024 Update	.]
Image Image <th< th=""><th colspan="2"></th><th>TITLE/ABSTRACT I Identification as a study of AI methodology, specifying the category of technology used (eg. deep learning) ABSTRACT 2 Summary of study design, methods, results, and conclusions INTRODUCTION</th><th></th></th<>			TITLE/ABSTRACT I Identification as a study of AI methodology, specifying the category of technology used (eg. deep learning) ABSTRACT 2 Summary of study design, methods, results, and conclusions INTRODUCTION	
Data7Data sourcesel B. Brismar, Giovanni E. Cacciamani, John A. Carrino,8Inclusion and exclusion criteriaChiang, Tessa S. Cook, Renato Cuocolo, John Dami- Carlo N. De Cecco, Hesham Elhalawani, Guillermo edorov, Benjamin Fine, Adam E. Flanders, Judy Wawira er, Safwan S. Halabi, Sven Haller, William Hsu, Krishna 109Data preprocessinged rov, Benjamin Fine, Adam E. Flanders, Judy Wawira er, Safwan S. Halabi, Sven Haller, William Hsu, Krishna -Cramer, Apostolos H. Karantanas, Felipe C. Kitamura, 1210Selection of data subsets-Cramer, Apostolos H. Karantanas, Felipe C. Kitamura, o Maas, Anant Madabhushi, Lena Maier-Hein, Kostas 1311De-identification methods How missing data were handled 13oh, Elmar Kotter, Elizabeth A. Krupinski, Curtis P. Lan- io Maas, Anant Madabhushi, Lena Maier-Hein, Kostas ti, Jaishree Naidoo, Emanuele Neri, Robert Ochs, Niko- s Pathomas, Katja Pinker-Domenig, Daniel Pinto dos ros Protontarios, Mauricio Reyes, Veronica Rotemberg, el Salinas-Miranda, Francesco Sardanelli, Mark E. Sch- 1616Source of reference standard annotations 17Annotation of test set			approach 4 Study aims, objectives, and hypotheses METHODS	CLAIM 2024 Update Panel: Sunhy Abbara, Saif Afat, Udunna C. Anazodo, Anna Andreychenko, Folkert W. Asselbergs, Aldo Badano, Bettina Baessler, Bayarbaatar
Reference of reference standardInstruction of interformed (s) used to obtain reference standardInstruction of reference Rotemberg,15Rationale for choosing the reference standardInstruction of reference Rotemberg,16Source of reference standard annotationsInstruction of reference Rotemberg,17Annotation of test setInstruction of test set		8 Inclusion 9 Data p 10 Selection 11 De-iden 12 How m 13 Image	on and exclusion criteria reprocessing on of data subsets ntification methods nissing data were handled acquisition protocol	el B. Brismar, Giovanni E. Cacciamani, John A. Carrino, Chiang, Tessa S. Cook, Renato Cuocolo, John Dami- Carlo N. De Cecco, Hesham Elhalawani, Guillermo edorov, Benjamin Fine, Adam E. Flanders, Judy Wawira er, Safwan S. Halabi, Sven Haller, William Hsu, Krishna -Cramer, Apostolos H. Karantanas, Felipe C. Kitamura, oh, Elmar Kotter, Elizabeth A. Krupinski, Curtis P. Lan- io Maas, Anant Madabhushi, Lena Maier-Hein, Kostas tí, Jaishree Naidoo, Emanuele Neri, Robert Ochs, Niko-
18 Measures of inter- and intrarater variability of features described by the annotators wood, Carol C. Wu, Greg Zaharchuk, Marc Zins	<i>Reference Standard</i>	 Ration Source Annota 	ale for choosing the reference standard of reference standard annotations ation of test set	Iros Protonotarios, Mauricio Reyes, Veronica Rotemberg, Iel Salinas-Miranda, Francesco Sardanelli, Mark E. Sch- enza, Ronnie Sebro, Prateek Sharma, An Tang, Antonios er Laak, Peter M. A. van Ooijen, Vasantha K. Venugopal, Wood, Carol C. Wu, Greg Zaharchuk, Marc Zins



Key areas of focus: Radiation dose estimation & optimization

Al dose image


Al dose image

Deep learning CT reconstruction

DNN learns by adjusting various parameters via back-propagation:

- high contrast resolution •
- low contrast resolution •
- image noise
- image texture

.

CT number accuracy •

Image quality improvement

PLOS ONE

RESEARCH ARTICLE

Denoising of pediatric low dose abdominal CT using deep learning based algorithm

Hyoung Suk Park¹, Kiwan Jeon¹, JeongEun Lee^{2,3}, Sun Kyoung You^{2,3}*

1 National Institute for Mathematical Sciences, Daejeon, Republic of Korea, 2 Department of Radiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea, 3 Department of Radiology, Chungnam National University Hospital, Daejeon, Republic of Korea

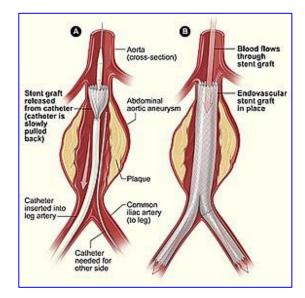
* sunkyou@cnuh.co.kr

Received: 8 July 2021 Revised: 28 October 2021 Accepted: 2 November 2021

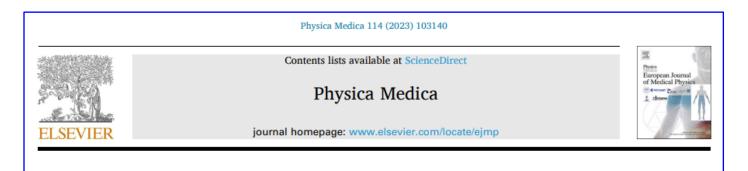
DOI: 10.1002/mp.15354

RESEARCH ARTICLE

MEDICAL PHYSICS

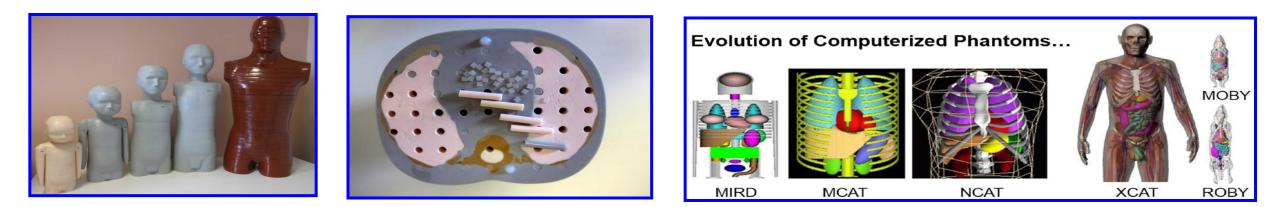

A deep learning method for eliminating head motion artifacts in computed tomography

Bin Su^{1,1} | Yuting Wen^{2,1} | Yanyan Liu^{1,1} | Shu Liao³ | Jianwei Fu¹ | Guotao Quan¹ | Zhenlin Li²



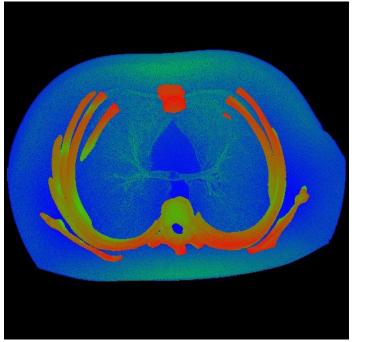
Establishment of DRLs using AI

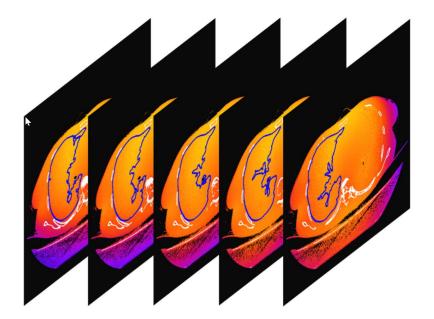
Endovascular Aneurysm Repair


A neural network-enhanced methodology for the rapid establishment of local DRLs in interventional radiology: EVAR as a case example

Eleftherios Tzanis, John Damilakis

Department of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, 71003 Heraklion, Crete, Greece


Patient dosimetry: How do we estimate patient doses?



Patient-specific and equipment specific dosimetry

Real time personalized patient dosimetry

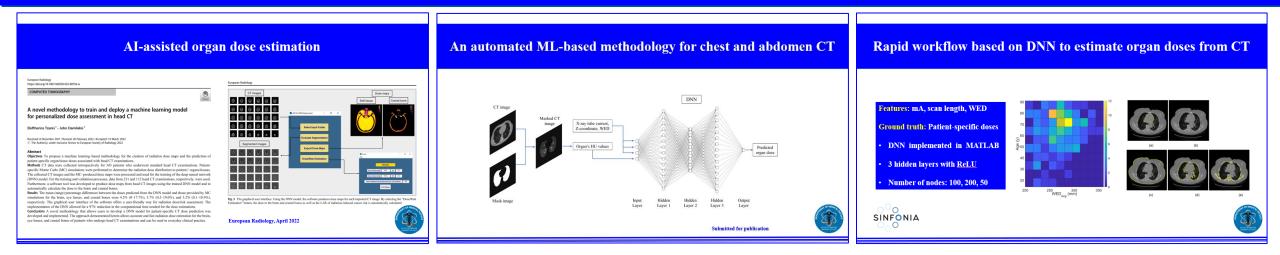
We need

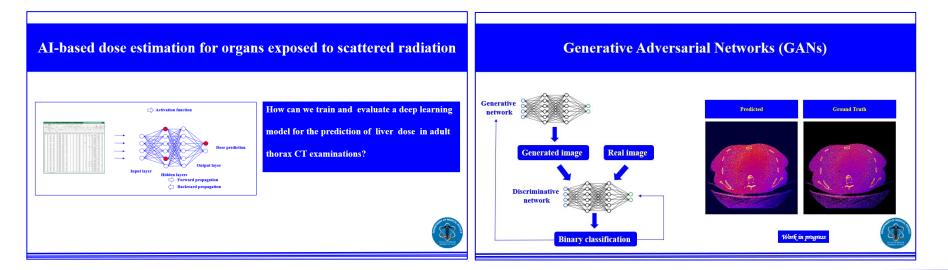
- Equipment-specific dosimetry
- True patient-specific dosimetry
- Protocol-specific dosimetry
- Real-time dosimetry

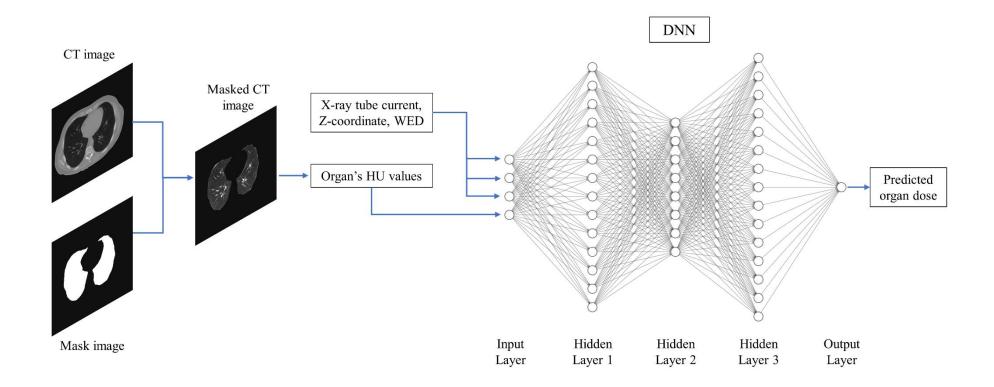
for organ and tissue dose estimation

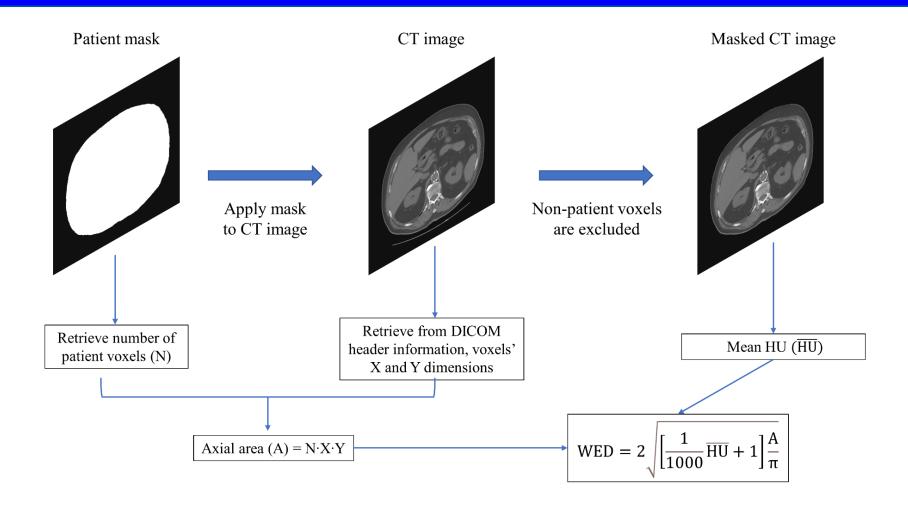
Real time personalized dosimetry

Organ dose information will be automatically incorporated into

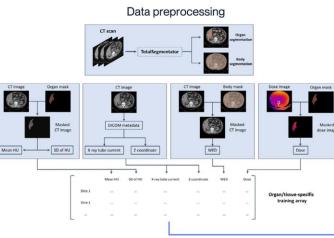

the structured reporting templates so referring physicians will

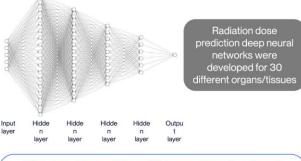

have complete information about patient doses and risks


AI-powered patient radiation dose prediction



Submitted for publication





<section-header><image/><image/><text><text><text><text><text></text></text></text></text></text></section-header>		Contents li	ists available at ScienceDirect	IT I I I I I I I I I I I I I I I I I I
A fully automated machine learning-based methodology for personalized adiation dose assessment in thoracic and abdomen CT leftherios Tzanis, John Stratakis, Marios Myronakis, John Damilakis [*] parment of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, Crete 71003, Greece		Ph	ysica Medica	of Medical Physics
adiation dose assessment in thoracic and abdomen CT leftherios Tzanis, John Stratakis, Marios Myronakis, John Damilakis partment of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, Crete 71003, Greece	ELSEVIER	journal homepag	ge: www.elsevier.com/locate/ejmp	
diation dose assessment in thoracic and abdomen CT ftherios Tzanis, John Stratakis, Marios Myronakis, John Damilakis* rment of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, Crete 71003, Greece				
Ieftherios Tzanis, John Stratakis, Marios Myronakis, John Damilakis* partment of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, Crete 71003, Greece anis and Damilakis European Radiology	•	•		ized
artment of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, Crete 71003, Greece	diation do	ose assessment in thoracic	and abdomen CI	
anis and Damilakis European Radiology	leftherios Tza	nis, John Stratakis, Marios Myron	nakis, John Damilakis	
		and a charle of the Wales the bandles of Course B.C. B.C. B.C.	208, Heraklion, Crete 71003, Greece	
	partment of Medical Ph	tysics, School of Medicine, University of Crete, P.O. Box 22		
	epartment of Medical Ph	ysics, school of Medicine, University of Crete, P.O. Box 22		
	epartment of Medical Ph	ysacs, school of Medicine, University of Crete, P.O. Box 22		
	partment of Medical Pi	ysics, school of Medicine, University of Crete, P.O. Box 22		
tps://doi.org/10.1007/s00330-024-11002-0	epartment of Medical Ph	ysics, school of Medicine, University of Crete, P.O. Box 22		
	nis and Damilakis	s European Radiology		
	and Damilakis	s European Radiology		

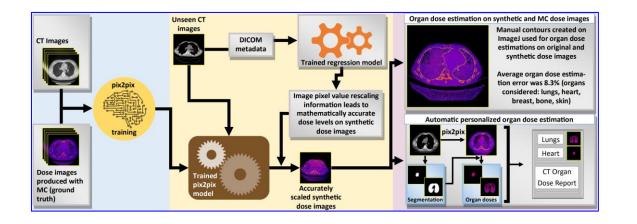
A machine learning-based pipeline for multi-organ/tissue patient-specific radiation dosimetry in CT

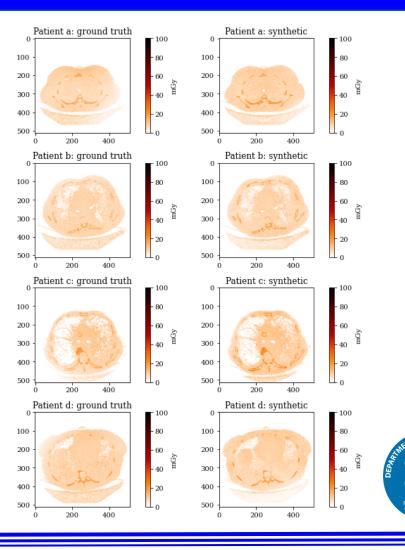
The accuracy and time-efficiency of the developed pipeline compose a useful tool for personalized dosimetry in CT. By adopting the proposed workflow, institutions can utilize an automated pipeline for patientspecific dosimetry in CT. The developed code and dose prediction models are provided as open source.

Evaluation of the segmentation models						
Segmentation models	Jaccard score			Dice score		
	Mean	SD	Range	Mean	SD	Range
Lungs	0.92	0.03	0.83-0.95	0.96	0.02	0.91-0.97
Liver	0.93	0.06	0.59-0.97	0.96	0.03	0.74-0.98
Spleen	0.89	0.06	0.58-0.94	0.94	0.04	0.73-0.97
Stomach	0.81	0.12	0.43-0.94	0.89	0.08	0.60-0.97
Kidneys	0.90	0.09	0.60-0.97	0.94	0.05	0.75-0.98
Patient	0.90	0.06	0.76-0.96	0.95	0.03	0.86-0.98

SD = standard deviation

Organ doses estimated with the dose prediction DNN model and MC simulations					
	DNN (mGy)*	MC (mGy)*			
Lungs	12.0 (4.1)	12.7 (5.1)			
Liver	18.1 (4.6)	18.1 (4.5)			
Spleen	18.3 (4.5)	18.7 (4.2)			
Stomach	17.7 (4.4)	17.7 (4.1)			
Kidneys	18.6 (4.3)	18.4 (4.0)			
*Mean values (SD), DNN = deep neural network, MC = Monte Carlo					




Generative Adversarial Networks (GANs)

only patient images as input?

Theocharis Berris^a, Marios Myronakis^a, John Stratakis^b, Kostas Perisinakis^a, Apostolos Karantanas^c, John Damilakis^{a,*}

i-Dose: a new web-based platform

http://ctdose-iqurad.med.uoc.gr/

Key areas of focus: Ethical & legal considerations

Main ethical and legal considerations

- Risks for privacy and security
- Risks associated with lack of transparency
- **Risks of biases**
- Gaps in regulations (e.g., in the field of AI accountability/liability)

Gaps in certification of AI products

Key areas of focus: E&T for radiological protection personnel

Key strategies to integrate AI education into RP curricula

- AI-powered virtual assistants
- Hands-on simulations
- Modular training ptograms
- Collaborative learning with AI experts

AI presents unique challenges and amazing opportunities

Challenges/Issues

- Bias and discrimination
- Lack of transparency
- Dependence
- Lack of regulation
- Security and privacy concerns

Technical solutions and tools (examples)

- Federated Learning, Swarm learning
- Generative AI
- OCR DL
- Explainable AI
- Low code/no code AI

Benefits

- Improved, fast workflows
- Available at all times
- Reduction of human error
- Reduction of cost
- Informed patient care

