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lonizing Radiation (IR) is a ubiquitous environmental agent

All living organisms are continually exposed to various natural or man-made sources of IR
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Average Annual Radiation Dose

Sources Hadon&
Thoron

Units
mrem (United States) 228 mrem 147 mrem 77 mrem 43 mrem 33 mrem 33 mrem 29 mrem 21 mrem 13 mrem 0.5 mrem 0.3 mrem
mSv (International) 228 mSv 1.47 mSv 0.77 mSv 0.43 mSv 0.33 mSv 0.33mSv 0.29 mSv 0.21 mSv 0.13mSv 0.005 mSv 0.003 mSv

(Source: National Council on Radiation Protection & Measurements, Report No. 160)
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I‘R? BIOLOGICAL EFFECTS OF IONIZING RADIATION
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» It has become important to characterize a dose-response curve capable to explain the health effects and

risks of repeated exposure to low doses.
» The probabilities of detrimental effects from exposure to LDIR (<100 mSv) are estimated by "linear no-
threshold"” model (LNT) only for radiological protection purposes.
The LNT model implies that there is no level of exposure to ionizing radiation below which there is zero risk of causing cancer.
The scientific debate on the validity of this "hypothesis"” is still open and numerous authors believe that this approach is not
sufficient to describe the real risk of long-term health effects (i.e. cancer) related to LDIR exposure.

Several lines of experimental and epidemiological evidence
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IONIZING RADIATION AT THE CELLULAR LEVEL
Nuclear DNA: primary TARGET of ionizing radiation

Radiation

Indirect effect Radiation
e

Water radiolysis
DNA ionization : Free Radical formation

DNA DAMAGE
Breaks in one or both DNA strands

Unrepaired

Cell death




Non-targeted effects

The detrimental effects of ionizing radiation are not restricted only in the irradiated cells, but
also to non-irradiated bystander or even distant cells manifesting various biological effects.

Non-DNA targeted effects of ionizing radiation, which include genomic instability, and a

variety of bystander effects including abscopal effects and bystander mediated adaptive
response, have raised concerns about the magnitude of low-dose radiation risk.

Signals via medium/plasma or gap junctions
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Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, Little MP. Non-targeted effects of ionising radiation—-implications for low dose risk. Mutat Res. 2013 Apr-Jun;752(2):84-98. doi: 10.1016/j.mrrev.2012.12.001



Non-targeted effects

Understanding of the mechanisms of non-targeted and delayed effects is fundamental
because there is some evidence for differential responses in gene and protein expression

for high- and low-dose radiation exposures.
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lonizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection.

Belli M, Tabocchini MA.IntJ Mol Sci. 2020 Aug 20;21(17):5993. doi: 10.3390/ijms21175993.
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Biodosimetry and LDIR exposure

Currently physical and biological dosimetry is unable to identify early biological responses
and long-term pro-oncogenic effects induced by LDIR,
so the discovery of intrinsic biomarkers is a priority especially for increasing occupational exposure

Principal issues

- Characterize a dose-response curve that can explain the health effects and risks of repeated
LDIR exposure;

- Responses to (very) low doses are difficult to predict, and the relationship between
absorbed dose, DNA damage, and health risk remains an open guestion to date;

- Large-scale epidemiological studies are limited because hundreds of thousands of
samples are needed to provide statistically significant data related to risk assessment;

- Current evidence is based on few studies conducted on ex-vivo irradiated human blood
samples, mouse or primate (NHP) animal models.

Paunesku T, Woloschak G. Reflections on Basic Science Studies Involving Low Doses of lonizing Radiation. Health
Phys. 2018 Nov;115(5):623-627. doi: 10.1097/HP.0000000000000937. PMID: 30260853; PMCID: PMC6226262.



THE DISCOVERY OF SENSITIVE BIOMARKERS REPRESENTS A
PRIORITY AREA OF INTEREST

Biomarkers can be used for multiple purposes:

- estimation or validation of received dose, improving the
validity of a correlation between exposure and biological
responses

- Investigation of individual susceptibility
- early detection of a radiation induced health effect




Biomarker = any measurement reflecting an interaction between a biological system and an
environmental agent, which may be chemical, physical or biological

Biomarkers of exposure: available at some point after
exposure and are suitable for estimating the dose
received,;

Biomarkers of susceptibility: available before, during or
after exposure and can predict an increased risk of
radiation effects;

Biomarkers of late effects: used to assess health effects
that are present a long time after exposure, before
clinical detection of the radiation induced disease or
death:

Biomarkers of persistent effects: allow the assessment
of radiation effects present a long period of time after
exposure.

Timeline

Exposure to low-
dose ionizing
radiation

Persons with
early biological
effects

Diseased person

A
‘ Persons non-exposed to low dose ionizing radiation

O Persons exposed to low dose ionizing radiation

Biomarker of
susceptibility

Biomarker %
of
exposure

| | 22  Biomarker
I of late

[ ] a2  effects

Pernot E, et al. lonizing radiation biomarkers for potential use in epidemiological studies. Mutat Res.
2012 Oct-Dec;751(2):258-286. doi: 10.1016/j.mrrev.2012.05.003. Epub 2012 Jun 4. PMID: 22677531.

Biomarker of
persistent
effect




Cytogenetics
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Overview of potential IR biomarkers

Cytogenetic biomarkers;

Biomarkers related to nucleotide pool damage
and DNA damage;

Biomarkers related to germline inherited
mutations and variants;

Biomarkers related to induced mutations;
Biomarkers related to transcriptional and
translational changes;

Biomarkers related to epigenomic
modifications;

Other biomarkers (including biophysical
markers of exposure)



Potential biomarkers of IR exposure/effects

Time for detection of
Type of biomarkers Assay IR dose range response (hours, days,
ears

Blood cellcount | Count of peripheral blood lymphocytes from 2/3 to 8 Gy . 12-24 hours
Cytogenetic
Dicentric chromosomes - Dicentric chromosome o from0.1to 5 Gy o Years
Choromosome translocations — fluorescence in situ hybridization (FISH), . from 0.25 to 4 Gy
Premature chromosome condensation chromosome banding . from 0.2 to 20 Gy
Complex chromosomal rearrangement . NA
Telomere length — Flow cytometry, FISH, gPCR . NA
Micronuclei ° from 0.2 to 4 Gy . Months
Gene mutation related
° Single nucleotide polymorphisms (SNP) - SNP assay/genome wide association studies e NA
(GWAS)
Copy number variants and alterations
- Comparative genomic hybridization (CGH), ° NA ° Years
FISH, next generation sequencing (NGS)
- Flow cytometer assay for Glycophorin A >1 Gy
Induced somatic mutations - PCR for hypoxantine-guanine phosphoribosyl >90 mGy
transferase mutation
Related to nucleotide pool and DNA damage
° Double and/or single strand break - Comet assay ° from 0.1 to 8 Gy . Weeks
° yYyH2AX assay - Immunofluorescent staining, flow cytometry, ° from 0.01 to 8 Gy ° Days
high throughput techniques
- HPLC-enzyme-linked immunosorbent assay
Extracellular 8-Oxo-deoxyguanosine (ELISA), ELISA . from 1 to 100 mGy . Weeks
Related to transcriptional and translational changes
° Gene expression genes (cell cycle, apoptosis and
DNA repair) - TagMan assay, gPCR, microarray, nanostring, e NA ° Days, Months
Serum amylase NGS
C-reactive protein — Serum amylase test ° >1 Gy ° Days
Cytokine levels — ELISA ° >1 Gy ° Years
Protein analysis — ELISA ° >ml Gy
— Western blotting, ELISA, high throughput ° NA

techniques



Review
Ionizing radiation biomarkers in epidemiological

studies — An update

Janet Hall 22 B, Penny A. Jeggo B, Catharine West © Maria Gomolka 9, Roel Quintens ® Christophe Badie |, Olivie

P —— The dicentric assay remains the international biodosimetry SRR
“gold standard” for recent radiation exposures

L.
Mohammed . e
... Elisabeth Cardis %~ * 2 &

ELSEVIER

Mutation Research/Reviews in Mutation Research
Volume 771, January-March 2017, Pages 59-84

Potential biomarkers of LDIR exposure / effects in epidemiological studies

The extensive information gathered through the different IR induced biomarker projects and the rapid
development of bioinformatics/system biology should provide the tools to identify the mechanisms underlying
the cellular processes induced in response to low dose IR.

d A. Benot; hardon £, Yann Guéguen &, Siamak Haghdoost |, Mats Harms-Ringhdahl !

Exposure

A roadmap has been provided for biomarker development from
discovery to implementation and used to summarize the current status
of biomarkers proposed for epidemiological studies.

Discovery >> Development >> Validation >> Qualification > Application

Identify candidate Develop SOPs, & Assess inter-lab Validate the BM Use BM in molecular
BM in pre-clinical determine assay reproducibility, in a prospective  epidemiological studies to
or clinical studies, repeatability, performance in study increase understanding of
show radiation reproducibility, multiple cohorts, impact of low dose/dose
dose response dynamic range, if relevant validate rate exposure
BM distribution cut-off values
g e eD eD eD
> Does it address > Was the assay » Was the assay > Did the BM
an unmet need? reproducible? reproducible validate?
> Is it radiation > Was there a wide across labs?
specific? dynamic range? > Did it work in
> Are there sample || » Was there a wide multiple cohorts?
collections for BM distribution? | | > Did cut-offs
assay validate?
development?

Most potential biomarkers remain at the discovery stage and for
some there is sufficient evidence that further development is not
warranted. One biomarker identified in the final stages of
development and as a priority for further research is

«Radiation specific mRNA transcript profiles»

Cytogenetic biomarkers (dicentrics/chromosome aberrations) I

Chromosomal rearrangements

Micronucleated reticulocytes

Radiation induced DNA lesions

gammaH2AX

Circulating DNAs

Radiation induced mutation profile

Changes in RNA profiles

Radiation induced alternative splicing

Changes in protein profiles

Radiation induced protein post-translational
modifications

miRNA and non-coding RNAs expression profiles

Epigenetic markers

RedQOx imbalance

Metabolomics

Biophysical markers

Mitochondrial biomarkers (oxidation/phosphorylation)

Mitochondrial biomarkers (common deletions)

Biomarkers of internal exposure (radio-isotopes)

. Detectable o R o S
Hall J et al. lonizing radiation biomarkers in epidemiological

studies - An update. Mutat Res Rev Mutat Res. 2017 Jan-
Mar;771:59-84. doi: 10.1016/j.mrrev.2017.01.001. Epub
Not reported 2017 Jan 16. PMID: 28342453.

Potentially detectable



THE DISCOVERY OF SENSITIVE BIOMARKERS REPRESENTS A
PRIORITY AREA OF INTEREST

Non/Mini-invasive predictive biomarkers of:

*Exposure: estimation or validation of received dose (biodosimetry)
-Effect: early detection of a radiation induced health effect or
identification of long-term permanent side-effects

*Susceptibility during or after exposure that can predict an increased

cancer risk.
winning strategy
A
Y )

Liquid biopsy: High-throughput

Peripheral Blood technologies
Mononuclear Cells (PBMCs) (i.e. gene expression
as a source of tumour-derived profiles)

molecular information



Laboratory tests used for gene expression analysis (both in vitro and in vivo studies).

DNA Microarray Quantitative real-time PCR
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“Gene signature”: an appealing strategy for biodosimetry

Several studies have shown that gene expression (GE) is modulated in a dose-dependent manner, suggesting that it
could be used as an alternative tool for mini-invasive radiation biodosimetry.
These studies have shown even that LDIR exposure induces a well-defined physiological response that can be determined
by gene expression analysis. Low-dose exposure mainly activates stimulatory, inflammatory and pro-survival responses.

Abend M, et al. 2016. Examining radiation-induced in vivo and in vitro gene expression changes of the peripheral blood in
different laboratories for biodosimetry purposes: first RENEB gene expression study. Radiat Res. 185:109-123.

IN VITRO STUDIES

In-vitro studies on human peripheral blood cells exposed to doses between 5 -25 mGy suggest that GE analysis has a sensitivity
to LDIR exposure comparable to the DCA method (Knops et al. 2012; Riecke et al. 2012; Manning et al. 2013; Nosel et al. 2013)

Exposure of human lymphocytes to LDIR rather than high dose IR significantly affects biological processes/pathways such as
DNA repair and stress response, cell growth and differentiation, metabolism, and transcriptional regulation (Fachin AL, et al 2007)

3 hours after exposure to LDIR of 0.05 Gy, CD4+ T-lymphocytes showed a 10-fold greater gene down-regulation profile than that
observed in the other cell subpopulations (T CD8+ and T CD56+), suggesting that the CD4+subpopulation is more sensitive to
LDIR. Analysis of down-regulated genes showed that the early response to LDIR alters processes associated with protein
biosynthesis and oxidative phosphorylation (Gruel G, et al, 2008)

LDIR (0.05 Gy) — activation of inflammatory genetic patterns, up-regulation of genes associated with innate immunity (HMGB1,
TLR4, TLR9, MyD88 and IRAK1).

HDIR — Up-regulation of genes involved in cell cycle arrest (CDKN1A), pro-apoptotic (AEN), and DNA-damage and repair genes
(POLH and DDB2)

El-Saghire et al (2013)



EX VIVO STUDIES

GE analysis of PBMCs isolated from prostate cancer patients collected before and after (24 hours) _
radiotherapy showed that GE allows discrimination of exposure between 0.09-0.017 Gy. The FDXR gene
has been identified as a sensitive and reliable tool for radiation dose assessment even after LDIR
exposure (Abend et al. 2016).

GE analysis (microarray) of PBMCs isolated from 20 cancer patients revealed the induction of a specific

“transcriptional signature" of inflammation-associated genes before radiotherapy last fraction compared
with the time of radiotherapy initiation (Cruz-Garcia L, et al 2021) B

78 genes differentially expressed in lymphocytes of 14 healthcare workers exposed for 9.32 £ 5.97 years
to LDIR ranging from 0.696 to 39.088 mSv compared with 9 unexposed workers (Fachin et al. 2009) -

256 differentially expressed genes in peripheral blood mononuclear cells (PBMCSs) isolated from 28
healthcare workers exposed to a persistent comulative dose of 19 +/- 38 mSv (Morandi et al. 2009)

Gene expression analysis (qPCR) showed up-regulation of the hMSH2 gene by about 5-fold in 30

S—

exposed workers compared with the control group (25) and a positive association of hMSH2 expression _|
also with the number of working hours. hMSH2 gene is involved in DNA repair mechanisms, e.g.
mismatch repair (Machi et al. 2022)

Cancer patients

Physicians, nurses
radiological
technicians

Patterns of GE analysis as a potentially powerful tool for detection and validation of a dose- and time-dependent

panel of genes for stochastic risk assessment related to LDIR (occupational) exposure.

Need for further studies to support the possibility of developing an ideal panel of IR-responsive genes



OPBG Research Team - PILOT STUDY
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We have started with a pilot study on gene expression profiling in peripheral blood
mononuclear cells (PBMCs) to evaluate LDIR-specific molecular processes, or
pathways, or responses and even to identify (early and late) possible biomarkers of
LDIR exposure in a small sample of HCW of Bambino Gesu Children’s Hospital (OPBG)




STUDY DESIGN
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UP-REGULATED GENES IN RADIATION WORKERS
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DOWN-REGULATED GENES IN RADIATION WORKERS

Genes down-regulated in B (50 in total)
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UP-REGULATED GENES IN CATEGORY A+T COMPARED TO CATEGORY A
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Risk factors:
for example,
radiation

T TN

[
L

Early genetic alteration
{initiation events);
for example, RET, BRAF

RET GENE: lonizing Radiation and Thyroyd Cancer

SED

Late genetic alteration
[progression events);
for example, TF53, CTNNB1
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In this review (Shakyawar SK et al. 2023), the
authors performed a literature search to
systematically catalog the radiation-induced
alterations from multi-omic studies and the
radiation countermeasures. We covered the
radiation-induced changes in the genomic,
transcriptomic, proteomic, metabolomic,
lipidomic, and microbiome profiles.

Multi-omic profiles obtained from high-
resolution omics platforms offer a holistic
approach for identifying reliable biomarkers
to predict the radiation injury of organs and
tissues resulting from radiation exposures.
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CONCLUSIONS

« The results of several research projects might open new scenarios towards the
identification of specific tools for assessing early and late effects of LDIR in exposed
workers.

» The best scientific evidence currently available suggests that multi-omic profiles obtained
from high-resolution omics platforms may help to identify biological response to LDIR.

 The biological effects we observed in our small sample of exposed workers encourage
further investigations to assess whether one or more dysregulated genes after response
could be used as candidate biomarkers of exposure, or early/late effects, or susceptibility to
LDIR, but the limitations of using gene expression profiles must be considered:

- highly dynamic and transient nature of the signals;
- specific response pattern not yet identified;
- partial correlation with radiation exposure in terms of dose or dose-rate

 Further research on the individual IR genetic signature and possible confounding factors
IS needed to estimate the effective harmful dose and dose-rate in order to create a
customized radiation protection model for workers and for patients exposed to LDIR.

« Current research data suggests the necessity of integrated studies of radiobiology and
epidemiology at the national and international level in order to collect more systematic
and deep information about health effects of low dose ionizing radiation.
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