Dose Rate Effectiveness Factor (DREF): Estimates from Epidemiologic Studies

> TG91 Working Group, R Shore, L Walsh, W Rühm

Overview: Procedure to Estimate the Dose Rate Effectiveness Factor (DREF)

- Low dose and low dose-rate (LDR) studies: Obtain dose-response risk estimates for all solid cancer - studies of radiation workers or environmental radiation exposures.
 - LDR: doses are accumulated over time at a slow rate, and cumulative doses are typically low.
- Compare the LDR radiation risk estimates with corresponding risk estimates from the Japanese atomic bomb Lifespan Study (LSS)
 - LSS: Doses largely received in under a minute
- Estimate of DREF: <u>Inverse</u> of the overall ratio of the LDR risk to the corresponding LSS risk (LDR/LSS)

LDLDR Study Selection

- Avoid study-selection bias: include <u>all</u> LDR studies that reported solid cancer risk estimates based on dose-response analyses
- Result: Found 24 LDR studies of solid cancer mortality occupational or environmental radiation exposures with dose-response analyses
- Found an additional 5 LDR studies with dose-response analyses of solid cancer incidence, no mortality analysis
- Combined total of 29 LDR studies

Methodology to Compare LDR and Corresponding LSS Risk Estimates

- For each LDR study, calculate an <u>adjusted</u> regression estimate of radiation risk in the LSS study.
 - Adjustment matched for: mean dose, percentage of females, average age at first exposure, average age at latest follow-up.
- For each LDR_i study we had its risk estimate_i (and Cl_i), and the corresponding risk estimate_i (and Cl_i) from the adjusted LSS_i study.
- •So could calc for each LDR_i study a LDR_i/LSS_i ratio and Cl_i on that ratio.

Meta-analysis of the LDLDR_i/LSS_i Ratios

- Issue: Meta-analysis is weighted according to the inverse of the relative precision of each LDR_i/LSS_i ratio.
 - Mayak worker study had large weight in meta-analysis, mainly because of the comparatively high cumulative doses of the workers.
- Workers at the Mayak radiochemical and plutonium production facilities had high cumulative external doses (average of >400 mGy) and often, high plutonium exposures as well.
- Therefore, we conducted meta-analyses including:
- (1) All studies with all Mayak workers

(2) All studies, but excluding Mayak workers at the radiochemical or Puproduction facilities.

(3) Only studies with mean cumulative doses under 100 mGy – (which excluded the Mayak and Chornobyl clean-up worker studies)

Estimates of the Dose Rate Effectiveness Factor (DREF) (with 95% CI) for All Solid Cancer from Meta-analyses of Low-Dose and Low-Dose-Rate (LDR) Studies

	DREF: Mortality Studies Only	DREF: Mortality and Incidence Studies
Including all Mayak workers	2.0 (1.4, 3.7)	1.9 (1.4, 3.0)
Mayak, except radiochemical or Pu-production facility workers	1.4 (0.9, 2.7)	1.5 (1.1, 2.5)
Only studies with mean cumulative doses under 100 mGy ^a	0.9 (0.6, 1.8)	1.3 (0.9, 2.3)

^a All studies except Chornobyl clean-up workers and Mayak workers, whose mean doses were >100 mGy.

Tentative Conclusions from the Epidemiologic LDR Analyses

- Results are not compatible with a high value of DREF (e.g., >3)
- Can't differentiate DREF of 1 versus 2. Too much heterogeneity among the LDR studies and among DREF estimates.
- Other sources of uncertainty:
 - Comparing risk estimates across populations (Japanese vs. western world nuclear workers)
 - Dosimetric (A-bomb several MeV vs. workers several hundred keV)

www.icrp.org

