Recommended citation
ICRP, 2004. Release of Patients after Therapy with Unsealed Radionuclides. ICRP Publication 94. Ann. ICRP 34 (2).
Abstract - After some therapeutic nuclear medicine procedures with unsealed radionuclides, precautions may be needed to limit doses to other people, but this is rarely the case after diagnostic procedures. Iodine-131 results in the largest dose to medical staff, the public, caregivers, and relatives. Other radionuclides used in therapy are usually simple beta emitters (e.g. phosphorus-32, strontium-89, and yttrium-90) that pose much less risk. Dose limits apply to exposure of the public and medical staff from patients. Previously, the ICRP has recommended that a source-related dose constraint for optimisation of a few mSv/episode applies to relatives, visitors, and caregivers at home, rather than a dose limit. The present report recommends that young children and infants, as well as visitors not engaged in direct care or comforting, should be treated as members of the public (i.e. be subject to the public dose limit).
The modes of exposure to other people are: external exposure; internal exposure due to contamination; and environmental pathways. Dose to adults from patients is mainly due to external exposure. Contamination of infants and children with saliva from a patient could result in significant doses to the child’s thyroid. It is important to avoid contamination of children and pregnant women. After radioiodine therapy, mothers must cease breastfeeding immediately. Many types of therapy with unsealed radionuclides are contraindicated in pregnant females. Women should not become pregnant for some time after radioisotope therapy. Technetium-99m dominates discharges to the environment from excreta of nuclear medicine patients, but its short half-life limits its importance. The second largest discharges, iodine-131, can be detected in the environment after medical uses but with no measurable environmental impact. Storing patients' urine after therapy appears to have minimal benefit.
Radionuclides released into modern sewage systems are likely to result in doses to sewer workers and the public that are well below public dose limits. The decision to hospitalise or release a patient should be determined on an individual basis. In addition to residual activity in the patient, the decision should take many other factors into account. Hospitalisation will reduce exposure to the public and relatives, but will increase exposure to hospital staff. Hospitalisation often involves a significant psychological burden as well as monetary and other costs that should be analysed and justified. Patients travelling after radioiodine therapy rarely present a hazard to other passengers if travel times are limited to a few hours.
Environmental or other radiation-detection devices are able to detect patients who have had radioiodine therapy for several weeks after treatment. Personnel operating such detectors should be specifically trained to identify and deal with nuclear medicine patients. Records of the specifics of therapy with unsealed radionuclides should be maintained at the hospital and given to the patient along with written precautionary instructions. In the case of death of a patient who has had radiotherapy with unsealed radionuclides in the last few months, special precautions may be required.